Differensial tenglamalar kafedrasi oddiy differensial tenglamalar fanidan


Ketma-ket yaqinlashish usuli. (Pikar algoritmi)



Yüklə 1,68 Mb.
səhifə3/6
tarix10.11.2022
ölçüsü1,68 Mb.
#68468
1   2   3   4   5   6
Differensial tenglamalar kafedrasi oddiy differensial tenglamala

    Bu səhifədəki naviqasiya:
  • Misol
Ketma-ket yaqinlashish usuli. (Pikar algoritmi)

Pikar usuli birinchi guruhga tegishli taqribiy usullardan bo’lib amaliy masalalarni yechishda qo’llash mumkin. Bizga, 



y=f(x,y) (7.1.1)

birinchi tartibli differensial tenglamaning u(x0)=u0 - boshlang’ich shartni qanoatlantiruvchi yechimini topish masalasi qo’yilsin. Differensial tenglamaning o’ng tomoni f(x,y) funktsiya {|x-x0| a; |y-y0| b} to’rtburchakda uzluksiz va «u» bo’yicha uzluksiz xususiy hosilaga ega bo’lsin. (7.1.1) dan 



dy=f(x,u)dx

ifodani ikkala tomonini «x0» dan «x» gacha integrallasak



(7.1.2)

Bundan, boshlang’ich shartni hisobga olgan holda



(7.1.3)

Noma’lum funktsiya integral ifodasi ostida qatnashganligi uchun hosil bo’lgan (7.1.3) tenglamani integral tenglama deb ataladi.


(7.1.3) da f(x,y) funktsiyadagi “u”ning o’rniga uning ma’lum qiymati “u0”ni qo’yib birinchi yaqinlashish bo’yicha yechim u1(x) ni topamiz:
(7.1.4)

Endi (7.1.3) dagi f(x,y) funktsiyaning “u” o’rniga uni ma’lum qiymati “u1” ni qo’ysak ikkinchi yaqinlashish bo’yicha yechim “u2(x)” ni hosil qilamiz:



(7.1.5)

Ushbu jarayonni davom ettirsak





(7.1.6) 

Shunday qilib quyidagi funktsiyalar ketma-ketligini hosil qildik



u1(x), u2(x), u3(x), ..., un(x), (7.1.7)

Bu ketma-ketlik yaqinlashuvchi yoki uzoqlashuvchi bo’lishi mumkin. 


Quyidagi teoremani isbotsiz keltiramiz:

Teorema. Agar (x0;u0) nuqta atrofida f(x,y) funktsiya uzluksiz va chegaralangan xususiy hosilasi f(x,y) mavjud bo’lsa, u holda Pikar {y(x)} ketma-ketligi (7.1.1) tenglamaning yechimi bo’lgan va u(x0)= u0 shartni qanoatlantiruvchi u(x) funktsiyaga yaqinlashadi.
Demak, differensial tenglamalarni yechishda ushbu teoremani shartlari bajarilsa (ya’ni (7.1.7) yaqinlashuvchi bo’lsa) Pikar usulini qo’llash mumkin. Agar (7.1.7) ketma-ketlik uzoqlashuvchi bo’lsa, bu usulni qo’llash mumkin bo’lmaydi.
Misol. Ketma-ket yaqinlashish usuli bilan  tenglamaning x0=0 da u0=1 shartni qanoatlantiruvchi xususiy yechimi topilsin.
Yechish. Tenglamani ikkala tomonini «x0» dan «x» gacha integrallasak 


u”ning o’rniga uning ma’lum qiymati “u0”ni qo’yib birinchi yaqinlashish bo’yicha yechim u1(x) ni topamiz:



(7.1.5) ga asosan



Xuddi shuningdek u3 va u4 ni ham hisoblasak





Berilgan misoldagi tenglama chiziqli birinchi tartibli differensial tenglama bo’lganligi sababli aniq yechimini topishimiz imkoni bor: 



Bundan ko’rinadiki taqribiy yechimlar u3 va u4 aniq yechimdan faqat oxirgi hadlari bilan farq qiladilar. Yuqoridagi teorema shartlari bajarganligi sababli bu misol uchun Pikar algoritmi yaqinlashuvchi bo’ladi.





Yüklə 1,68 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin