4. Conclusions
To conclude, the heterojunction diodes composed of CdTe thin films and vertically
well-oriented Si nanowire arrays were successfully fabricated and their photodiode properties
were systematically characterized and compared to planar Si based control samples. Both
devices exhibited p-n junction characteristics in the dark and under illumination. The Si
nanowire based device clearly demonstrated exceptional improvements in the structural,
electrical and optoelectronic properties. The higher rectifying ratio, lower ideality factor,
reduced reverse leakage current and series resistance were obtained. A relatively fast
photoresponse (
1 s) was measured. Photoresponsivity measurements revealed that the
device with Si nanowire arrays was sensitive to near-infrared wavelengths and showed
approximately seven times higher sensitivity (at 845 nm). In this respect, we believe that the
CdTe thin film/Si nanowire heterojunction device structure with significant improvement in
sensitivity and detectivity could be a promising alternative to existing optoelectronic devices.
21
Acknowledgements
F. A. A. and G. A. would like to give thanks to The Scientific & Technical Research
Council of Turkey (TUBITAK) 2218-National Postdoctoral Research Fellowship Programme
for financial support. H. E. U. acknowledges supports from the Distinguished Young
Scientists award of the Turkish Academy of Sciences (TUBA). Middle East Technical
University (METU) Central Laboratory facilities are also greatly acknowledged.
References
[1] K.Q. Peng, X. Wang, L.Li, X.L. Wu, S.T. Lee, J. Am. Chem.Soc. 132 (2010) 6872 -
6873.
[2] J.S. Jie, W.J. Zhang, K.Q. Peng, G.D. Yuan, C.S. Lee, S.T. Lee, Adv. Funct. Mater. 18
(2008) 3251- 3257.
[3] A. Puzder, A.J. Williamson, J.C. Grossman, G. Galli, Phys. Rev. Lett. 88 (2002) 097401 -
097404.
[4] M. Kulakci, T. Colakoglu, B. Ozdemir, M. Parlak, H.E. Unalan and R. Turan,
Nanotechnology 24 (2013) 375203 - 375210.
[5] B. Ozdemir, M. Kulakci, R. Turan and H.E. Unalan, Nanotechnology 22 (2011) 155606 -
155613.
[6] A.I. Hochbaum, R. Fan, R.R. He and P.D. Yang, Nano Lett. 5 (2005) 457 - 460.
[7] M.L. Zhang, K.Q. Peng, X. Fan, J.S. Jie, R.Q. Zhang, S.T. Lee and N.B. Wong, J. Phys.
Chem. C 112 (2008) 4444 - 4450.
[8] J. Bauer, F. Fleischer, O. Breitenstein, L. Schubert, P. Werner, U. Gösele, M. Zacharias,
Appl. Phys. Lett. 90 (2007) 012105 - 012108.
[9] R.K. Rakesh, R.K. Narasimha, A.R. Phani, Materials Letters 66 (2012) 110 - 112.
22
[10] G. Akgul, F. A. Akgul, E. Mulazimoglu, H.E. Unalan and R. Turan, J. Phys. D: Appl.
Phys. 47 (2014) 065106 - 065113.
[11] S. Manna, S. Das, S. P. Mondal, R. Singha and S.K. Ray, J. Phys. Chem. C 116 (2012)
7126 - 7133.
[12] F.A. Akgul, G. Akgul, H.H. Gullu, H.E. Unalan and R. Turan, Philosophical Magazine
95 (2015) 1164 - 1183.
[13] R.A. Ismail, K.I. Hassan, O.A. Abdulrazaq, W.H. Abode, Materials Science in
Semiconductor Processing 10 (2007) 19–23.
[14] S. Seto, S. Yamada, T. Miyakawa, K. Suzuki, Journal of Crystal Growth 237 (2002)
1585–1588.
[15] M.A. Razooqia, A.F. Abdulameer, A.N. Hameed, R.A. Abdullaha and E.I. Sabbar,
Advanced Materials Research 702 (2013) 236 - 241.
[16] C. Xie, L. B. Luo, L.H. Zeng, L. Zhu, J.J. Chen, B. Nie, J.G. Hu, Q. Li, C.Y. Wu, L.
Wang and J.S. Jie, Cryst. Eng. Comm. 14 (2012) 7222 - 7228.
[17] S.K. Srivastava, D. Kumar, S.W. Schmitt, K.N. Sood, S.H. Christiansen and P.K. Singh,
Nanotechnology 25 (2014) 175601 - 175618.
[18] S.K. Srivastava, D. Kumar, P.K. Singh, M. Kar, V. Kumar and M. Husain, Sol. Energ.
Mater. Sol. Cells 94 (2010) 1506 - 1511.
[19] D. Kumar, S.K. Srivastava, P.K. Singh M. Husain and V. Kumar, Sol. Energ. Mater. Sol.
Cells 95 (2011) 215 - 218.
[20] Y. Wu, Z. Xia, Z. Liang, J. Zhou, H. Jiao, H. Cao, and X. Qin, Optics Express, 22 (2014)
A1292 - A1302.
[21] V.B. Patil, D. S. Sutrave, G.S. Shahane, L.P. Deshmukh, Thin Solid Films 401 35(2001)
35 - 38.
23
[22] S. Chandramohan, R. Sathyamoorthy, S. Lalitha, S. Senthilarasu, Solar Energy Materials
& Solar Cells 90 (2006) 686 - 693.
[23] A.J. Al-Douri, F.Y. Al-Shakily, A.A. Alnajjar and M.F.A. Alias, Advances in
Condensed Matter Physics 2011 (2011) 910967 - 910973.
[24] T. Chu, S. Chu, C. Ferekides, J. Britt and C. Wu, J. Appl. Phys. 71 (1992) 3870 - 3876.
[25] S. Ringel, A. Smith, M. MacDougal and A. Rohatgi, J. Appl. Phys. 70 (1991) 881 - 889.
[26] U. Khairnar, D. Bhavsar, R. Vaidya and G. Bhavsar, Mater. Chem. Phys. 80 (2003) 421
- 427.
[27] A.D. Compaan, A. Gupta, S. Lee, S. Wang, J. Drayton, Solar Energy 77 (2004) 815 -
822.
[28] E.S. Jang, J.H. Won, Y.W. Kim, X. Chen and J.H. Choy, CrystEngComm 12 (2010)
3467 - 3470.
[29] Landolt-Bornstein Tables, edited by O. Madelung and M. Schulz, Vol. III/22a, Springer,
Berlin, 1987.
[30] L.S. Yu, in: Y.F. Li (Ed.), Physics of Semiconductor Heterojunction, Science Press,
Beijing, 1990.
[31] J. Ramiro, A. Perea, J. F. Trigo, Y. Laaziz, E. G. Camarero, Thin Solid Films 65 (2000)
361 - 362.
[32] V. Dzhagan, I. Lokteva, C. Himcinschi, X. Jin, J.K. Olesiak, D.R.T. Zahn, Nanoscale
Research Letters 6 (2011) 1 - 10.
[33] V. Dzhagan, M. Y. Valakh, J. K. Olesiak, I. Lokteva, D.R.T. Zahn, Appl Phys Lett 94
(2009) 243101 - 243104.
[34] M. Becerril, O. Zelaya-Angel, A.C.Medina-Torres, J.R. Aguilar-Hernández, R. Ramírez-
Bon, F.J.Espinoza-Beltran, Journal of Crystal Growth 311 (2009) 1245 - 1249.
24
[35] T. Fromherz, F. Hauzenberger, W. Faschinger, M. Helm, P. Juza, H. Sitter, and G.
Bauer, Phys. Rev. B 47, (1993) 1998 - 2002.
[36] B. Ozdemir, M. Kulakci, R. Turan and H.E. Unalan, Appl. Phys. Lett. 99 (2011) 113510
- 113512.
[37] A.K. Katiyar, A.K. Sinha, S. Manna, R. Aluguri and S.K. Ray, Phys. Chem. Chem.
Phys. 15 (2013) 20887 - 20893.
Dostları ilə paylaş: |