Teng kuchli formulalar. Tavtologiya – mantiq qonunii. I.3.1 - ta’rif. MA ning Á va  formulalari berilgan bo‘lib, bu formulalar tarkibiga kirgan barcha mulohazalar A1 ,. . ., Am - lardan iborat bo‘lsin. Agar A1 , . . . , Ammulohazalarning barcha qiymatlar tizimlari ( i1, . . . , im) lar uchun Á va  formulalar bir щil qiymatlar qabul qilsalar, u holda, bu formulalar teng kuchli formulalar deyiladi. Á va  formulalarning teng kuchliligi Á º  ko‘rinishda ifodalanadi.
I.3.2 - ta’rif. Mulohazalar algebrasining
Á( A1,. . . , An) formulasi A1 ,. . . , Anmulohazalarning barcha qiymattizimi ( i1, . . . , in) uchun 1 qiymat qabul qilsa, aynan rost formula yoki tavtologiya yoki mantiq qonunii deyiladi. Aynan rost formulani qisqacha AR deb belgilaymiz.
I.3.3 - ta’rif. MA ning Á ( A 1, . . . , A n) formulasi
A1 ,. . . , An mulohazalarning barcha qiymattizimi
( i1 , . . . , in ) lar uchun 0 qiymat qabul qilsa, aynan yolg‘on yoki ziddiyat deyiladi I.3.4 - ta’rif. Agar mulohazalar algebrasining
Á (A1 , . . . , An) formulasi A1 , . . . , Anlarning kamida bitta ( i1 , . . . , in) qiymattizimida 1 ga teng qiymat qabul qilsa, u holda bu formula bajariluvchi formula deyiladi. I.3.5 - teorema. Mulohazalar algebrasining Á va  formulalari teng kuchli formulalar bo‘lishi uchun, Á Û Â formula aynan rost formula bo‘lishi zarur va etarli.
Isbot. Á º  bo‘lsin. U holda Á va  formulalarga kirgan barcha propozitsional o‘zgaruvchilarning barcha qiymattizimlarida Á va  formulalar bir xil qiymatlar qabul qiladilar. YA’ni, Á Û Â = 1 bo‘ladi.
Aksincha, Á Û Â = 1 bo‘lsa, Á = 1 bo‘lganda  = 1 va
Á = 0 bo‘lganda  = 0 bo‘ladi.
I.3.6. Asosiytengkuchliformulalar.
A Ù A º A (kon’yunksiyaning idempotentlik qonunii).
A Ú A º A (diz’yunksiyaning idempotentlik qonunii).
A Ù 1 º A .
A Ú 1 º 1.
A Ù 0 º 0 .
A Ú 0 º A .
A Ú ù A º 1 – uchinchisini inkor qilish qonunii.
A Ù ù A º 0 - ziddiyatga keltirish qonunii.
ù ( ù A ) º A - qo‘sh inkor qonunii.
A Ù ( V Ú A ) º A .
A Ú ( V Ù A ) º A .
A Û V º ( A Þ V ) Ù ( V Þ A ).
A Þ V º ù A Ú V .
ù ( A Ù V ) º ù A Ú ù V .
ù ( A Ú V ) º ù A Ù ù V .
A Ù V º ù ( ù A Ù ù V ).
A Ú V º ù ( ù A Ù ù V ).
A Ù V º V Ù A – kon’yunksiyaning kommutativlik qonunii.
A Ú V º V Ú A – diz’yunksiyaning kommutativlik qonunii.
A Ù ( V Ú S ) º ( A Ù V ) Ú ( A Ù S ) - Ù ning Ú ga nisbatan distributivlik qonunii.
A Ú ( V Ù S ) º ( A Ú V ) Ù ( A Ú S ) - Ú ning Ù ga nisbatan distributivlik qonunii.
A Ù ( V Ù S ) º ( A Ù V ) Ù S – kon’yunksiyaning assotsiativlik qonunii.
A Ú ( V Ú S ) º ( A Ú V ) Ú S – diz’yunksiyaning assotsiativlik qonunii.