Gacha javoblar



Yüklə 92,65 Kb.
səhifə2/4
tarix21.05.2022
ölçüsü92,65 Kb.
#58896
1   2   3   4
76-80-javoblar

Bu masalani echish uchun V  sohani bo’laklarga ajratamiz:
(V1), (V2),…. (Vn) uning bo’laklari bo’lsin va har bir bo’lakdan Mi(դi,ii) nuqtani tanlaylik. Har bir Vi bo’lakda zichlik o’zgarmas va (դi,ii) ga teng. U holda bo`lakning massasi mi taqriban
m (դi,ii)Vi
ga teng. Butun jismning massasi esa taqriban
m Vi
teng bo`ladi. Bo`lakning diametrini d(Vi) desak, bo`linishning diametrini dv= nolga intilsa, u holda bu taqribiy tenglik aniq bo`lib,
m= (2.1)
va masala yechildi.
Bu masalani echimidan ko’rinadiki, bunday qatorlardan limit olish integral Yig’indilardan limit olishga o’xshash bo’layapti. Bunday limitlar ko’proq mexanika va fizika
masalalarida uchraydi. Bu limitning qiymati uch karrali integral deb ataladi. U holda
jismning massasi
(2.2)
ko`rinishida yoziladi.
Endi uch karrali integralning mavjud bo’lish shartlarini keltiramiz.
Biror (V) sohada f(x,y,z) funksiya berilgan bo`lsin. Bu sohani fazoviy to’r orqali chekli sondagi (V1), (V2),…. (Vn) bo’laklarga bo’lamiz. Bu bo’laklar mos ravishda V1, V2,…. Vn hajmlarga ega bo’lsin. i- chi (Vi) bo`lakdan ixtiyoriy (դi,ii) nuqta olib, bu nuqtadagi funksiyaning f (դi,ii) qiymatini shu bo’lakchaning hajmi ga Vi
ko’paytiramiz. Barcha bo’lakchalardagi bunday ko’paytmalarni yig’ib, ushbu

integral yig’indini tuzamiz.

Yüklə 92,65 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin