Ikkinchi tartibli egri chiziqlar


-ta’rif. Ellipsning fokuslari orasidagi masofaning katta o’qining uzunligiga nisbati ellipsning ekstsentrisiteti



Yüklə 270,5 Kb.
səhifə3/5
tarix08.04.2023
ölçüsü270,5 Kb.
#95043
1   2   3   4   5
IKKINCHI TARTIBLI EGRI CHIZIQNING TA`RIFI. AYLANA. ELLIPS. GIPERBOLA. PARABOLA

2-ta’rif. Ellipsning fokuslari orasidagi masofaning katta o’qining uzunligiga nisbati ellipsning ekstsentrisiteti deyiladi va u harfi bilan belgilanadi:

Bu yerda bo’lgani uchun bo’ladi.
Misol. nuqta orqali o’tuvchi fokuslari orasidagi masofa 6 ga teng bo’lgan ellipsning kanonik tenglamasini yozing.
Yechish. Ellipsning kanonik tenglamasi

ni qaraymiz. nuqta ellipsga tegishli bo’lgani uchun , bundan . Endi ni topish qoldi; ma’lumki, , bunda fokuslar orasidagi masofaning yarimi =25+9=34. Demak, izlangan tenglama

bo’ladi.


4. Giperbola


1-ta’rif. Ixtiyoriy nuqtasidan fokuslar deb ataluvchi berilgan ikki nuqtagacha bo’lgan masofalar ayirmasining absolyut qiymati uzgarmas miqdor ga teng bo’lgan tekislikdagi barcha nuqtalar to’plami giperbola deyiladi. (o’zgarmas miqdor fokuslar orasidagi masofadan ( dan) kichik deb olinadi).
Giperbola tenglamasini keltirib chiqarish uchun ellipsdagidek ish ko’ramiz.
Bu yerda ham abssissa o’qini fokuslardan o’tkazamiz, koordinata boshini esa fokuslarning o’rtasidan olamiz. U holda fokuslar bo’ladi. Ta’rifga ko’ra ,
yoki
.
Buni soddalashtirib,
(10)
tenglamaga kelamiz, bu yerda , chunki Shuning uchun deb olamiz. U holda (10) tenglama
(11)
ko’rinishga keladi. Bu tenglama giperbolaning kanonik tenglamasi deyiladi.
Endi (11) tenlamaga ko’ra giperbolaning shaklini aniqlaymiz.
(11) tenglama o’zgaruvchilarning juft darajalarini saqlagani uchun giperbola ikkita simmetriya o’qiga ega bo’lib, ular koordinata o’qlaridan iborat. Giperbolaning simmetriya o’qlari uning o’qlari deb ataladi, ularning kesishish nuqtasi esa giperbolaning markazi deb ataladi. Giperbolaning fokuslari joylashgan o’q uning fokal o’qi deyiladi.
Giperbola o’qni nuqtalarda kesib o’tadi, lekin o’q bilan kesishmaydi, chunki bo’lganda bo’lib qoladi va bu o’rinli emas. nuqtalar giperbolaning uchlari, ular orasidagi uzunligi 2a ga teng bo’lgan kesma esa uning haqiqiy oqi deyiladi.
o’qida nuqtalarni belgilasak, gacha bo’lgan uzunlikdagi kesma giperbolaning mavxum o’qi deyiladi. (11) tenglamani y ga nisbatan yechami
(12)
bo’ladi. Avvalo giperbolaning shakli I chorakda tasvirlanadi. Bu holda (12) da + ishora olinadi.
B u yerda bo’lib qoladi. (12) da da y 0 dan gacha o’sadi.
y
B1



F2 A2 A1 F1
0 x


B2
3-chizma.

Giperbola koordinata o’qlariga simmetrik bo’lgani uchun uning grafigi 3-chizmadagidek bo’ladi.


Giperbola tenglamalar bilan aniqlanuvchi ikkita assimptotaga ega.
Eslatma. Agar cheksiz tarmoqqa ega bo’lgan egri chiziqning nuqtasi shu chiziq buylab harakatlanib borganda uning l to’g’ri chiziqqacha bo’lgan masofasi nolga intilsa, l to’g’ri chiziq egri chiziqning assimptotasi deyiladi.
Agar a=b (yarim o’qlari teng) bo’lsa, giperbola teng tomonli deyiladi.

Yüklə 270,5 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin