Regressiya parametrlarini baholash
Hosila olingandan so'ng, chiziqli regressiya parametrlarini aniqlash uchun normal tenglamalar tizimini olamiz:
bu erda "a" va "b" - bu tenglamaning koeffitsientlari, va "c" – ozod had
Lineer tenglamalar tizimini Kramer usuli bilan echish
Tizimning determinanti (a1b2-a2b1) deb nomlanadi va quyidagicha yoziladi
Misol
№
|
Х (ekzogen)
|
У (endogen)
|
2011
|
8
|
1
|
2012
|
9
|
3
|
2013
|
11
|
5
|
2014
|
12
|
7
|
2015
|
14
|
9
|
Jadvalga binoan Y ning X ga regressiya tenglamasini toping
Misol
№
|
х
|
у
|
x2
|
x·y
|
1
|
8
|
1
|
64
|
8
|
2
|
9
|
3
|
81
|
27
|
3
|
11
|
5
|
121
|
55
|
4
|
12
|
7
|
144
|
84
|
5
|
14
|
9
|
196
|
126
|
∑
|
54
|
25
|
606
|
300
|
Biz barcha kerakli qiymatlarni hisoblaymiz:
Misol
№
|
х
|
у
|
x2
|
x·y
|
1
|
8
|
1
|
64
|
8
|
2
|
9
|
3
|
81
|
27
|
3
|
11
|
5
|
121
|
55
|
4
|
12
|
7
|
144
|
84
|
5
|
14
|
9
|
196
|
126
|
∑
|
54
|
25
|
606
|
300
|
5a
|
+
|
54b
|
=
|
25
|
54a
|
+
|
606b
|
=
|
300
| Misol
Tenglamalar tizimini kramer usuli bilan quyidagicha yechamiz:
Javob:
№
|
х
|
у
|
x2
|
x·y
|
Ŷ
|
εi=Y-Ŷ
|
1
|
8
|
1
|
64
|
8
|
1,35
|
-0,35
|
2
|
9
|
3
|
81
|
27
|
2,67
|
0,33
|
3
|
11
|
5
|
121
|
55
|
5,31
|
-0,31
|
4
|
12
|
7
|
144
|
84
|
6,63
|
0,37
|
5
|
14
|
9
|
196
|
126
|
9,27
|
-0,27
|
∑
|
54
|
25
|
606
|
300
| |
0
|
Y
X
0
Yxi
Yi
εi
εi=Y-Ŷ
Ŷ=a+b·x
Ŷ1=-9,21+1,32·8=1,35
Ŷ2=-9,21+1,32·9=2,67
Ŷ3=-9,21+1,32·11=5,31
Ŷ4=-9,21+1,32·12=6,63
Ŷ5=-9,21+1,32·14=9,27
E'TIBORINGIZ UCHUN RAHMAT !!!
http://fayllar.org
Dostları ilə paylaş: |