Kengoay. Pdf


  Methodology: A Modified Gravity Model Approach



Yüklə 353 Kb.
səhifə4/12
tarix28.12.2021
ölçüsü353 Kb.
#105
1   2   3   4   5   6   7   8   9   ...   12


Methodology: A Modified Gravity Model Approach 

 

The gravity equation has experienced something of a revival in recent years and 



provides a natural framework and a useful multivariate approach for assessing the 

impact of regional trading blocs on the level and direction of bilateral trade flows.  In 

addition to its continued success at predicting bilateral trade patterns it has seen 

renewed interest from the new economic geography literature as well as increased 

confidence in its traditionally weak theoretical foundations arising primarily from the 

so-called “new trade” theory.

8

  Indeed, Elbadawi (1997) argues that the  successful 



outcome of the gravity equation may stem from its ability to capture factors that 

conventional factor endowment theory cannot easily accommodate such as 

                                                 

8

 See Evenett and Keller (2002) for a discussion of theories that explain the gravity 



equation’s success.  The underlying theory can be found in Deardorff (1984) and Helpman 

and Krugman (1985).  See Anderson (1979), Bergstrand (1985) and Sanso et al. (1993) for 

further discussion. 



 

10

intra- industry trade (by considering, for example, economic size and scale economies) 



and the dramatic reallocation of resources following trade liberalisation (by 

introducing dummy variables).

9

 

 



An example of a gravity equation  where trade is positively related to two countries 

incomes and negatively related to the distance between them (reflected by transport 

costs) takes the following form (in natural  logarithms);

10

 



 

ij

ij

j

i

j

i

ij

u

D

N

N

Y

Y

M

log


log

log


log

log


log

log


log

5

4



3

2

2



0

+

+



+

+

+



+

=

α



α

α

α



α

α

   



(1) 

 

where M



ij

 is the imports from country to jY is income, N is population, D



ij

  is the 

distance between economies i and j and u



ij

 is the log normally distributed error term 

where E(log  u

ij

)=0.  Assuming no PTAs, equation (1) explains trade between 

countries i and j and behaves as a counterfactual. 

 

In this paper we modify the basic gravity equation where our estimating equation in 



natural logs (with expected signs in brackets) is shown in equation (2).

11

 



 

                                                 

9

 Previous developments included the addition of a population variable to reflect the role 



of scale economies (e.g. Linnemann 1966), a dummy variable to represent the existence of 

preferential trade arrangements (e.g. Aitken 1973), the difference of per capita income and 

the absolute income level as variables to capture the so-called Linder Hypothesis and 

differences  in  factor  endowments  respectively  (see  e.g.  Elbadawi  1997  and  others).  

Linder (1961) argued countries with similar income level have incentives to trade with 

each other.  In addition to distance and adjacency variables, recent studies also include a 

geographical measure of “remoteness” although our concentration on the ASEAN region 

makes its inclusion unnecessary. 

10

 This is a variation on the original Tinbergen (1962) and Pöylönen (1963) specifications. 



11

 All regressions are estimated using OLS in TSP.  Estimations using a Tobit model (to 

account for the fact that trade values are bounded from  below at zero) resulted in very 

similar results.  See Soloaga and Winters (2001) for a discussion. 




 

11

( )



(

)

(



)

(

)



(

)

( )



(

)

)



 

-

or



(

       


          

)

 



-

or 


 

(

       



          

          

log

   


          

 

          



)

 

-



or 

 

(



          

)

(



 

          

)

(

     



          

)

 



-

or 


 

(

      



          

          

(-)

        


          

          

log

log


   

          

      

          



)

(

  



          

          

)

(

   



          

          

)

(

         



          

)

(



    

          

          

          

          

log


log

log


log

log


log

11

10



9

8

7



6

5

4



3

2

1



0

+

+



+

+

+



+

+

+



+

+

+



+

+



+

+

+



+

+

+



+

+

+



=






Yüklə 353 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   ...   12




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin