Ketma-ketliklar, to‘plamlar, daraxtlar, graflarni ifodalash usullari



Yüklə 92,06 Kb.
səhifə9/9
tarix05.06.2023
ölçüsü92,06 Kb.
#125420
1   2   3   4   5   6   7   8   9
Ketma-ketliklar, to‘plamlar, daraxtlar, graflarni ifodalash usul

3. ODDIY ITERATSION USUL
Faraz kilaylik,

Ax = b (3.24)
tizim biror usul bilan


x + Cx + f (3.25)
ko`rinishga keltirilgan bo`lsin, bu erda S — qandaydir matritsa, f - vektor ustun. Dastlabki yaqinlashish vektori x(0) biror usul bilan (masalan, x(0) = 0) topilgan bo`lsin. Agar keyingi yaqinlashishlar


x(k+1) = Cx(k) + f (k=0,1,2, …)
rekkurent formula yordamida topilsa, bunday usul oddiy iteratsiya usuli deyiladi.


Agarda S matritsa elementlari

(3.26)

va

(3.27)
shartlardan birortasini kanoatlantirsa, u xolda iteratsion jarayon berilgan tenglamaning x echimiga ixtiyoriy boshlangich x(0) vektorda yaqinlashishi isbotlangan, ya`ni

Shunday kilib, tizimning aniq echimi cheksiz qadamlar natijasida -hosil qilinadi va hosil kilingan ketma-ketlikning ixtiyoriy vektori taqribiy echimni beradi. Bu taqribiy echimning xatoligini quyidagi formulalardan biri orqali ifodalash mumkin:




(3.28)
agarda (3.26) shart bajarilsa, yoki


(3.29)
agarda (3.27) shart bajarilsa. Bu baxolarni moc ravishda quyidagicha kuchaytirish mumkin:

eki


Iteratsion jarayonlarni yuqoridagi baxolar oldindan berilgan aniqlikni kanoatlantirganda tugallaydilar.
Boshlangich x(0) vektor, umuman olganda, ixtiyoriy tanlanishi mumkin. Ba`zan x(0) = f deb olishadi. Ammo x(0) vektorning komponentlari sifatida noma`lumlarning ko`pol taxminlarda aniqla-ngan qiymatlari olinadi.
(3.24) tizimni (3.25) ko`rinishga keltirishni bir necha xil usullarda amalga oshirish mumkin. Faqat (3.26) yoki (3.27) shartlardan birortasining bajarilishi lozim. Shunday usullardan ikkitasiga tuxtalamiz.
"Birinchi usul. Agarda A matritsaning diagonal elementlari noldan farqli bo`lsa, ya`ni

aii  0 (I=1,2,…, n)
u xolda berilgan tizimni


(3.30)
ko`rinishda yozish mumkin. Bu xolda S matritsa elementlari quyida-gicha aniqlanadi:

hamda (3.26) va (3.27) shartlar mos ravishda quyidagi ko`rinishni qabul kiladi:




(3.31)

(3.32)
(3.31) va (3.32) tengsizliklar A matritsaning diagonal elementlari


(3.33)
shartlartlarni kanoatlantirganda urinli bo`ladi.
Ikkinchi usul. Bu usulni quyidagi misol orqali namoyish kilamiz.
Umuman olganda, har qanday keltirilmagan matritsali tizim uchun yaqinlashuvchi iteratsion usullar mavjud, ammo ularning barchasi kisoblash uchun qulay emas.
Agarda iteratsiya usuli yaqinlashuvchi bo`lsa, u xolda bu usul yuko-rida kurilgan usullardan quyidagi afzalliklarga ega bo`ladi:
1. Iteratsion jarayon tezrok yaqinlashsa, ya`ni tizimning echimini aniqlash uchun p dan kamrok iteratsiya talab kilinsa, u xolda vaktdan yutiladi, chunki arifmetik emallar soni p2 ga mutanosib (proportsional) (Gauss usuli uchun esa bu son p3 ga mutanosib).
2. Yaxlitlash xatoliklari iteratsiya usulida natijaga kamrok ta`-sir etadi. Bundan tashqari iteratsiya usuli o`z xatoligini to`g’rilab boruvchi usuldir.
3. Iteratsiya usuli tizimning muayyan koeffitsientlari nolga teng bo`lgan kolda juda ham qulaylashadi. Bunday tizimlar xususiy hosilali differentsial tenglamalarni echganda ko`prok uchraydi.
4. Iteratsiya jarayonida bir xil turdagi amallar bajariladi, bu esa eX.M uchun programmalashtirishni osonlashtiradi.
1- misol. Quyidagi tizim oddiy iteratsiya usuli bilan echilsin:


Echish. Birinchi usulda aytilganidek, bu tizimning tenglamalarini mos ravishda 10, 25, - 20, 10, 20 larga bo`lib, quyidagi ko`rinishda yozib olamiz:

bu erda (3.31) shart bajariladi. Xakikatan ham,


Dastlabki yaqinlashish x(0) sifatida ozod xadlar ustuni (0,6; 0,44; 0,95; 1; 1,6) ni olib keyingi yaqinlashishlarni topamiz:




=
0,6 – 0,1  0,44 + 0,3  0,95 + 0,2  1 – 0,1  1,6 = 0.881


= 0,44 + 0.04  0,6 – 0,04  0,95 + 0,2  1 + 0,08  1,6 = 0,754

Shunga o`xshash = 0,892; = 1,851; = 1,72. Hisoblashlarning davomini 3.4- jadvalda keltiramiz:
3.4-jadval


k
















0

0,6

0,44

0,95

1

1,6

1

0.881

0,754

0.892

1,851

1,72

2

0.9884

0.9482

1,0029

1,9147

1,9859

3

0,9904

0,9814

0,9908

1,9939

1,9854

4

0,99944

0.99753

0,99789

1,99364

1.99897

5

0,99839

0,99865

0,99929

1,99954

1,99970

6

0.99986

0,99989

0,99977

1,99976

1.99960

7

0,999934

0,999920

1,000018

1,999788

1,999947

8

0.999974

0,999951

0,999976

2,000042



1,999978

Yuqoridagi 3.4- jadvaldan ko`ramizki, 8-iteratsiya x1= 0,999974; x2= 0,99951; x3= 0,99998; x4 = 2,00004; x5= 1,99998 echimdan iborat. Bu topilgan taqribiy echim aniq echim
x1* = x2* = x3* = 1; x4* = x5* = 2
dan beshinchi xonaning birliklari buyichagina farqlanadi.
Yüklə 92,06 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin