Ushbu kurs ishi kirish, asosiy qism,uchta paragrf, xulosa va foydalanilgan adabiyotlardan iborat. Funksional analiz fanidan Sanoqsiz to ‘plamlar,Haqiqiy sonlar
to ‘plamining sanoqsizligi,Kantor-Bernshteyn teoremasiga duch kelamiz.
Ta’rif. segmentdagi nuqtalar to ‘plamiga ekvivalent bo ‘lga
to ‘plamlarni kontinuum quvvatli to ‘plamlar deyiladi.
Tabiiyki albatta kontinuum quvvatga ega bo ‘lgan harqanday to ‘plam sanoqsiz to ‘plamdir .
Endi konyinuum quvvatli to ‘plamlar haqida bir nevhta teoremalar
ko ‘rib chiqamiz.
Teorema2. Har qanday segmentdagi nuqtalar to ‘plami kontinuum quvvatli to ‘plamdir.
Teorema1: segmentning nuqtalaridan iborat to ‘plam sanoqsizdir.
Natija . Har qanday yoki yarim oraliqlar va oraliqdagi nuqtalar to ‘plami continuum quvvatga ega .
Sanoqsiz to ‘plamlar. To‘g‘ri chiziq nuqtalaridan iborat to ‘plam natural sonlar to ‘plami kabi ko ‘p uchrab turadigan cheksiz to ‘plamlar jumlasindandir.Shunisi taajjubliki ,to ‘g ‘ri chiziqnuqtalar to ‘plami natural sonlar to ‘plamiga ekvivalent emas ,ya’ni to ‘g ‘ri chiziq nuqtalarini nomerlab chiqish mumkin emas .
Bu quydagi teoremada isbotlanadi.
Teorema1: segmentning nuqtalaridan iborat to ‘plam sanoqsizdir.
Bu teorema to ‘plamlarni solishtirish usullarining ikkinchisi birinchisidan qulayroq ekanligini ko ‘rsatadi.Biz quyda bu teoremaning ikki vil isbotini qaraymiz