Annotatsiya Magistrlik dissertatsiya ishi ,,p-adik sonlar maydonida 1-Lipshits funksiyalar” ni o’rganishga bag‘ishlangan. Hozirgi kunda jahonda p-adik dinamik sistemalar nazariyasidagi asosiy masalalardan biri berilgan funksiyaga mos diskret vaqtli dinamik sistemani o'rganishdir. Berilgan funksiyaga mos dinamik sistemaning tortish sohalari, va trayektoriyalarning qo'zg'almas nuqtalardan qochish sohalarini aniqlash dinamik sistemani tasniflashda muhim aharniyat kasb etadi. Bu borada, parametrlarning qo'zg'aImas nuqtalar soni o'zgaradigan shartlarini topish, bu shartlar asosida asosida qoozg'almas nuqtalar va ularning xarakterini aniqlash maqsadli ilmiy tadqiqotlardan hisoblanadi. Ushbu magistrlik dissertatsiya ishi 1-Lipshits funksiyalarining xossalari va ularning dinamikasini o' rganishga bag'ishlangan. Dissertatsiya ishida xozirgacha o'rganilgan p-adik l-Lipshits funksiyalaming xossalari va dinamik sistemalar referativ tahlil qilingan va yangi ko'rinishidagi p-adik l-Lipshits funksiya dinamik sistemaning qo'zg'almas nuqtalari va trayektoriyalari o'rganilgan. Annotation The Master's thesis is devoted to the study of " First Lipschitz functions in the field of p-adic numbers". Nowadays, one of the main issues in the theory of p-adic dynamical systems in the world is the study of a discrete-time dynamical system corresponding to a given function. Determining the areas of attraction of the dynamic system corresponding to the given function, and the areas of avoidance of the fixed points of the trajectories is an important feature in the classification of the dynamic system. In this regard, finding the conditions under which the number of fixed points of the parameters changes, and determining the fixed points and their character based on these conditions are among the targeted scientific studies.
This master's thesis is devoted to the study of the properties of the first Lipschitz functions and their dynamics. In the thesis work, the properties of p-adic first Lipschitz function and dynamic systems studied so far are analyzed referentially, and the fixed points and trajectories of dynamic system of p-adic first Lipschitz function in a new form are studied.