10
2
+ 11
2
+ 12
2
+ 13
2
+ 14
2
365
n. p. bogdanov-belinski.
`zepiri angariSi~
s. a. raCinskis saxalxo skolaSi. 1895.
37
maTematikuri induqciis principi*
maTematikuri induqciis principi*
maTematikuri induqciis principi*
maTematikuri induqciis principi*
maTematikuri induqciis principi*
nebismier mecnierebaSi movlenebis Seswavlisas,
es maTematika iqneba Tu istoria, fizika Tu
medicina, astronomia Tu ekonomika yvelgan da
yovelTvis mTavaria kanonzomierebis dadgena,
romelic erTmaneTTan akavSirebs Sesaswavli
movlenis TiToeul elements. xSirad SesaZlebeli
xdeba aRmoCenili kanonzomiereba gamoisaxos
formuliT. adamianma, Tu esmis formulebis
`ena~,
SesaZloa uceb dainaxos kanonzomierebebis
aRmosaCenad, zogjer Zalian grZeli da
Sromatevadi saqmianobis Sedegi.
magram, Sen TavSi rom mkvlevari aRzardo,
araa sakmarisi gaigo mxolod kvlevis saboloo
Sedegebi. aucilebelia Cawvde TviT kvleviTi
muSaobis process da aiTviso is meTodi,
**
romelic gamoyenebuli iyo saboloo Sedegebis
misaRebad. mecnierebi muSaobaSi sxvadasxva
meTodebs iyeneben. TiToeul mecnierebaSic ki
maTi ricxvi uamravia. Cven ganvixilavT mxolod
maTematikuri induqciis meTods da mis gamoyenebas.
induqcias*** uwodeben msjelobis meTods,
romelsac kerZo magaliTebidan raime zogad
daskvnamde mivyavarT.
magaliTi 1.
kenti 1, 3, 5, 7, ..., (2n-1)
ricxvebis SekrebiT n cvladis sxvadasxva
mniSvnelobisaTvis (n = 1, 2, 3, ...) miviRebT:
_ hipoTeza SeiZleba ase CamovayaliboT:
`yvela
naturaluri
n-
saTvis marTebulia toloba
:
1 + 3 + 5 + ... + (2n - 1) = n
2
amrigad, xuTma ganxilulma magaliTma migviy-
vana hipoTezamde, romelic mtkicdeba, rom
marTebulia.
magaliTi 2.
maTematikosebi eZebdnen ra
mxolod martivi ricxvebis misaReb formulas,
gamoTqvamdnen sxavadasva hipoTezas. am mizniT
leonard eilerma Seamowma formula:
41
2
+
+
=
ϕ
x
x
)
x
(
Tu am formulaSi (samwevrSi) CavsvamT
naturalur 1, 2, 3, 4, 5 ricxvebs miviRebT:
.
71
)
5
(
;
61
)
4
(
;
53
)
3
(
;
47
)
2
(
;
43
)
1
(
=
=
=
=
=
ϕ
ϕ
ϕ
ϕ
ϕ
mocemuli samwevris yvela miRebuli mniS-
vneloba martivi ricxvia. Tu x-is nacvlad
CavsvamT 0, -1, -2, -3, -4 ricxvebs, miviRebT:
mocemuli samwevris mniSvnelobebi x cvladis
miTiTebuli mniSvnelobebisaTvisac agreTve
martivi ricxvebia.
ganxiluli msjelobis safuZvelze iqmneba
hipoTeza, rom samwevris
ϕ(x) mniSvneloba x-is
n e b i s m i e r i m T e l i m n i S v n e l o b i s a T v i s
(0,
±1, ±2, ±3, ...) martivi ricxvia. magram
gamoTqmuli hipoTeza mcdaria, radgan roca
x = 41, maSin
.
e.i. miiReba Sedgenili da ara martivi ricxvi.
damoukideblad Seamowme hipoTeza, roca
x = 40.
amrigad, msjelobis erTsa da imave meTods
zog SemTxvevaSi swor daskvnamde mivyavarT
(pirveli magaliTi), xolo zogSi _ mcdar
daskvnamde (meore magaliTi). amis mizezi isaa,
_
`jami, romelic erTi
Sesakrebisagan Sedgeba
~, aseTi
g a m o T q m a m a T e m a t i k a S i
miRebulia.
2
2
2
2
2
5
25
9
7
5
3
1
4
16
7
5
3
1
3
9
5
3
1
2
4
3
1
1
1
1
=
=
+
+
+
+
=
=
+
+
+
=
=
+
+
=
=
+
=
=
yvela moyvanil magaliTSi advili SesamCnevia:
pirveli kenti naturaluri ricxvebis jami
SesakrebTa ricxvis kvadratis tolia. bunebrivad
dagvebadeba kiTxva: xom ara aqvs adgili am Tvisebas
SesakrebTa nebismieri ricxvisaTvis? Cveni varaudi
* principi (laT. principium dasawyisi, dasabami) _ romelime Teoriis, moZRvrebis, mecnierebis da misT. ZiriTadi
amosavali debuleba; saxelmZRvanelo idea.
** meTodi (berZ. methodos) _ 1. bunebisa da sazogadoebrivi cxovrebis movlenaTa kvlevis, Secnobis xerxi. mag.,
eqsperimentuli meTodi. 2. xerxi, wesi, wesebis sistema raime moRvaweobaSi. miznis miRwevis saSualeba.
*** induqcia (laT. inductio) _ azrovnebis meTodi _ kerZo faqtebidan, calkeuli debulebebidan zogadi daskvnebis
gamotana (sapirisp. deduqcia).
38
maTematikuri induqciis principi
rom am msjelobebSi daskvna ramdenime magaliTis
ganxilvis Sedegad keTdeba, romlebic yvela
SesaZlo SemTxvevas ar moicavs, amitom msjelobais
am meTods
arasrul induqcias
uwodeben.
rogorc vxedavT, arasruli induqciis meTods
ar mivyevarT sruliad saimedo daskvnamde (swored
amitom Secda ferma, gv. 30), magram is imiTaa
sasargeblo, rom saSualebas gvaZlevs Camova-
yaliboT hipoTeza, romelic Semdgom SeiZleba
davamtkicoT an uarvyoT. magram Tu daskvna yvela
SemTxvevis ganxilvis safuZvelze keTdeba, maSin
msjelobis aseT meTods
srul induqcias uwo-
deben.
es meTodi maSin gamoiyeneba, roca
SemTxvevaTa ricxvi sasrulia (da ar aris
`metismetad didi~).
magaliTad: davamtkicoT, rom yoveli natura-
luri ricxvi n, romelic 2
≤ n ≤ 15 utolobas
akmayofilebs, an martivi ricxvia, an gamoisaxeba
araumetes sami martivi ricxvis namravlis saxiT.
damtkicebisaTvis ganvixiloT TiToeuli
naturaluri ricxvi 2-dan 15-mde. 2, 3, 5, 7, 11,
13 ricxvebi martivia. 4, 6, 9, 10, 14, 15 ricxvebi
SeiZleba warmovidginoT ori martivi ricxvis
namravlis saxiT, xolo danarCeni 8 da 12 ricxvebi
_ sami martivi ricxvis namravliT.
davubrundeT tolobas:
1 + 3 + 5 + ... + (2n - 1) = n
2.
es toloba SeiZleba ganvixiloT, rogorc
cvladis Semcveli winadadeba da moxerxebu-
lobisaTvis nebismieri naturaluri n-isaTvis igi
aRvniSnoT A(n)-iT. maSin A(1), A(2), A(3), A(4),
A(5)-is WeSmariteba niSnavs mocemuli formulis
marTebulobas, roca n=1, n=2, n=3, n=4, n=5
(rogorc dasawyisSi vaCveneT).
radganac A(5) winadadeba WeSmaritia:
2
5
9
7
5
3
1
=
+
+
+
+
, amitom
e.i. WeSmaritia A(6) winadadebac.
amrigad damtkicebulia, rom A(5)-is
WeSmaritebidan gamomdinareobs A(6)-is
WeSmariteba. Tu nacvlad sityvisa
`gamomdina-
reobs
~ gamoviyenebT niSans ⇒, maSin winadadeba
`A(5)-dan gamomdinareobs A(6)~ mokled ase
Caiwereba: A(5)
⇒ A(6).
davamtkicoT, rom A(k)
⇒ A(k +1). es
niSnavs, rom
2
k
)
1
k
2
(
...
5
3
1
=
−
+
+
+
+
to-
lobidan gamomdinareobs
toloba.
marTlac
axla ukve cxadia, rom A(6)
⇒ A(7). zustad
aseve A(7)
⇒ A(8); A(8) ⇒ A(9) da a.S.
aseTnairad SeiZleba mivaRwioT nebismier n
naturalur ricxvs da misTvis davamtkicoT
A(n). winadadebis WeSmariteba. sxvanairad rom
vTqvaT, A(n) winadadeba WeSmaritia nebismieri
naturaluri n-isaTvis, Tu igi WeSmaritia n=1-
isaTvis da nebismieri k-saTvis A(k)-dan
gamomdinareobs A(k+1). magram miuxedavad
naTqvamis sicxadisa da damajeroblobisa, aq saqme
gvaqvs axal maTematikur principTan, romelsac
maTematikuri induqciis principi
ewodeba:
Tu
A(n)
winadadeba, romelSic
n
natu-
raluri ricxvia, WeSmaritia
n=1
-isaTvis,
da iqidan rom igi WeSmaritia
n=k
-saTvis
(sadac
k
nebismieri naturaluri ricxvia)
gamomdinareobs misi WeSmariteba momdveno
n=k+1
-isaTvisac. maSin
A(n)
winadadeba
WeSmaritia iqneba nebismieri naturaluri
n
ricxvisaTvis
.
maTematikuri induqciis principi naturalur
ricxvTa ariTmetikis erT-erTi im aqsiomaTagania*,
romelsac farTod iyeneben maTematikaSi. am
principebze dafuZvnebulia mtkicebaTa meTodi,
romelsac
maTematikuri induqciis meTodi
ewodeba (sruli induqcia).
am meTodiT damtkiceba ori nawilisagan
Sedgeba: pirvel nawilSi amtkiceben (amowmeben)
A(1) winadadebis WeSmaritebas; meore nawilSi
varaudoben, rom A(n) WeSmaritia n=k-sTvis da
amtkiceben mis WeSmaritebas n = k + 1-isaTvis ,
e.i. asabuTeben Semdegs: A(k)
⇒ A(k+1).
Tu damtkicebis orive nawili Catarebulia,
maSin maTematikuri induqciis principis
safuZvelze A(n) winadadeba WeSmariti iqneba
nebismieri naturaluri n ricxvisaTvis.
axla SegviZlia CavTvaloT, rom zemoT
ganxiluli (1) toloba marTebulia nebismieri
naturaluri n ricxvisaTvis, radgan igi
m a r T e b u l i a n = 1- s a T v i s d a a m a s T a n
A(k)
⇒ A(k+1).
* aqsioma (berZ. axi
õ
ma) ama Tu im mecnierebaSi amosavlad miRebuli debuleba, romlis WeSmariteba daumtkiceblad
aris miRebuli, magram aucilebelia sxva debulebaTa dasamtkiceblad.
39
maTematikuri induqciis principi
ganvixiloT magaliTebi.
magaliTi 1.
mocemulia mimdevroba:
...
,
1
4
1
...
,
35
1
,
15
1
,
3
1
2
−
n
ipoveT misi pirveli n wevris jami.
amoxsna:
jer CamovayaliboT hipoTeza da
Semdeg igi davamtkicoT sruli induqciis
meTodiT. gamovTvaloT saZiebeli jamis ramdenime
pirveli mniSvneloba:
S
1
, S
2
, S
3
, S
4
, ...
;
5
2
15
6
15
1
S
15
1
3
1
S
1
2
=
=
+
=
+
=
;
7
3
35
1
5
2
35
1
S
35
1
15
1
3
1
S
2
3
=
+
=
+
=
+
+
=
;
9
4
63
28
63
1
7
3
63
1
S
63
1
35
1
15
1
3
1
S
3
4
=
=
+
=
+
=
+
+
+
=
Tu davakvirdebiT am jamebs, SevamCnevT, rom
mricxvelSi dgas saZiebeli jamis nomeri, xolo
mniSvnelSi _ gaorkecebuli nomers damatebuli 1.
amrigad, iqmneba hipoTeza, rom
1
2
1
4
1
...
35
1
15
1
3
1
2
+
=
+
+
+
+
+
n
n
n
(2)
(2) tolobis marTebulebis dasamtkiceblad
visargebloT maTematikuri induqciis meTodiT.
es toloba naturaluri n-isaTvis aRvniSnoT
A(n)-iT.
1.
A(1) WeSmaritia, radgan
1
2.
davamtkicoT, rom A(k)
⇒ A(k+1).
maSasadame davuSvaT hipoteza WeSmaritia rome-
liRac nebismieri k-saTvis da vamtkicebT mis
WeSmaritebas (k+1)-saTvis.
.
1
k
2
k
1
k
4
1
...
35
1
15
1
3
1
S
2
k
+
=
−
+
+
+
+
=
[
][
]
1
)
1
k
(
2
1
k
3
k
2
1
k
)
1
k
2
)(
3
k
2
(
)
1
k
)(
1
k
2
(
)
1
k
2
)(
3
k
2
(
1
k
k
2
k
2
)
1
k
2
)(
3
k
2
(
1
)
3
k
2
(
k
)
1
k
2
)(
3
k
2
(
1
1
k
2
k
1
)
1
k
(
2
1
)
1
k
(
2
1
1
k
2
k
1
)
1
k
(
4
1
1
k
2
k
1
)
1
k
(
4
1
S
S
2
2
2
k
1
k
+
+
+
=
+
+
=
=
+
+
+
+
=
+
+
+
+
+
=
=
+
+
+
+
=
+
+
+
+
+
=
−
+
+
+
+
+
=
=
−
+
+
+
=
−
+
+
=
+
maTematikuri induqciis meTodiT mtkicebis
orive nawili Catarebulia. maSasadame, (2)
toloba WeSmaritia n-is nebismieri naturaluri
mniSvnelobisaTvis.
1
L
mocemulia mimdevroba ariTmetikuli progresiis saxiT:
a
1
, a
2
, a
3
, ..., a
n
, sadac
a
2
= a
1
+d;
a
3
= a
2
+d = a
1
+d+d=a
1
+2d;
a
4
= a
3
+d=a
1
+2d+d = a
1
+3d.
d aris ariTmetikuli progresiis sxvaoba. Camoayalibe hipoTeza, progresiis
nebismieri wevrisaTvis da misi WeSmariteba daamtkice maTematikuri induqciis
meTodiT.
2
L
mocemulia mimdevroba geometriuli progresiis saxiT:
b
1
, b
2
, b
3
, ..., b
n
, . . . sadac
b
2
= qb
1
; (q
≠1)
b
3
= qb
2
= q
2
b
1
;
b
4
= qb
3
= q
3
b
1
.
q geometriuli progresiis mniSvnelia. Camoayalibe hipoTeza progresiis nebismieri wevrisaTvis
da misi WeSmariteba daamtkice maTematikuri induqciis meTodiT.
3
L
daamtkice: geometriuli progresiis pirveli n wevris jami
q
q
b
n
−
−
=
1
)
1
(
S
n
1
4
L
mocemulia mimdevroba:
⎭
⎬
⎫
⎩
⎨
⎧
+ )
1
(
1
n
n
.
40
maTematikuri induqciis principi
es niSnavs, rom mimdevrobas aqvs saxe:
.
)
1
(
1
,
...
,
4
3
1
,
3
2
1
,
2
1
1
+
⋅
⋅
⋅
n
n
gamoTvaleT am midevrobis pirveli n wevris jami.
5
L
daamtkice, rom 1-dan n-mde naturalur ricxvTa kvadratebis mimdevrobis jami udris:
6
)
1
2
)(
1
(
+
+
n
n
n
e. i.
.
n
n
n
n
...
6
)
1
2
)(
1
(
3
2
1
2
2
2
2
+
+
=
+
+
+
+
hipoTeza mocemulia.
6
L
daamtkice, rom
.
2
)
1
(
...
3
2
1
2
3
3
3
3
⎥⎦
⎤
⎢⎣
⎡
+
=
+
+
+
+
n
n
n
7
L
gaixsene bines formula da daamtkice misi WeSmariteba.
miTiTeba:
.
;
2
5
3
4
5
5
2
1
2
5
1
2
5
3
4
5
5
2
1
2
5
1
2
2
−
=
+
−
=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ −
+
=
+
+
=
⎟⎟⎠
⎞
⎜⎜⎝
⎛ +
8
L
maTematikuri induqciis meTodiT daamtkice, rom fibonaCis mimdevrobis pirveli n wevris
kvadratebis jami udris
.
1
n
n
+
⋅ a
a
m. k. esxeri.
`sami sfero~. 1945.
mor
mor
mor
mor
moric kornelis esxer
ic kornelis esxer
ic kornelis esxer
ic kornelis esxer
ic kornelis esxeri
i
i
i
i
holandieli mxatvari, grafikosi, mravali graviurisa da liTografiis avtori m. k.
esxeri daibada 1898 wlis 17 ivniss leeuvardenSi (niderlandebSi). yrmoba gaatara arnhe-
imSi da iqve swavlobda sko-
laSi. adreul asakSi cxadi
gaxda misi miswrafeba xat-
visadmi da swavla gaagrZela
arqiteqturis fakultetze.
magram holandieli mxatvris
de moskitas rCeviT, arqiteq-
turas Tavi daaneba da mu-
Saoba daiwyo grafikaSi. swav-
lis damTavrebis Semdeg, esxeri cameti weli cxovrobda
italiaSi. igi gansakuTrebiT moxibluli iyo romiT. bevrs
mogzaurobda fexiT samxreT italiaSi da espaneTSi.
1935 wels, italiaSi faSizmis damkvidrebis Semdeg
gadasaxlda SveicariaSi. 1941 wels dabrunda samSobloSi _
baanSi, xolo 1970 wlidan sikvdilamde cxovrobda larenSi.
gardaicvala 1972 wlis 27 marts.
msoflio aRiarebas esxerma 1951 wels miaRwia, rodesac
misi ramdenime namuSevari gamoqveynda cnobil JurnalebSi:
`The Studio~, `Time~ da `Life~.
1954 wels amsterdamSi Catarda maTematikosTa saerTa-
Soriso kongresi da masTan dakavSirebiT moawyves esxeris
didi gamofena. mecnierebma mis namuSevrebSi SeniSnes bevri
saerTo maTematikis zogad ideebTan, maSinve aRiares da Seiyvares
`TavianTi~ mxatvari. am droidan moyolebuli esxeris naxatebi
xSirad ibeWdeba fizika-maTematikur gamocemebSi.
esxeri ar malavda, rom cudad icoda maTematika, magram
ambobda: `me ufro xSirad maTematikosebTan vgrZnob did siax-
loves, vidre kolega mxatvrebTan~. leonardo da vinCisa da
albrext diureris msgavsad esxeri didad afasebda wesier
mravalwaxnagebs, xuT platoniseul sxeuls: tetraedri, heqsaedri,
oqtaedri, dodekaedri da ikosaedri. igi gaocebuli iyo maTi
srulyofilebiT da ambobda, rom isini ganasaxiereben harmoniisa
da wesrigisadmi adamianis swrafvis somboloebs. es sxeulebi
ar arian adamianis gonebis nayofi, radgan isini arsebobdnen
bunebaSi kacobriobis Seqmnamde gacilebiT ufro adre.
esxeri Tavis naSromebSi Taviseburad asaxavs samyaros
usasrulobas, sivrcisa da drois erTianobas, ar arsebul
obieqtebs, iluziebs da sxv.
sainteresoa, rom m. k. esxeris naxatebis didi koleqcia
Seagrova aSS-is yofili prezidentis, Teodor ruzveltis
SviliSvilma kornelius ruzveltma.
avtoportreti. 1943.
41
arqimedes aRmoCena
arqimedes aRmoCena
arqimedes aRmoCena
arqimedes aRmoCena
arqimedes aRmoCena
Zv. w. 323, daaxloebiT 33 wlis asakSi
gardaicvala aleqsandre makedoneli _ didi
aleqsandre. misi monarqia daiSala. aTenSi
Zalaufleba xelSi Caigdo antimakedonelma
reaqciam da misi maswavlebeli, udidesi moaz-
rovne, filosofosi, platonis moswavle aris-
totele (Zv. w. 384-322) iZulebuli gaxda
TavSesafaris saZebnelad gaqceuliyo. igi evbe-
aze q. qaldkideaSi gadasaxlda, sadac male 63
wlis asakSi gardaicvala. aTenma Tavisi poli-
tikuri mniSvneloba da pirveloba rogorc
inteleqtualurma centrma TandaTan dakarga.
am dros mecnieruli interesebis centrma egvi p-
teSi, didi aleqsandres mier daarsebul qalaq
aleqsandriaSi gadainacvla.
ptolomei I soterma (
`mxsneli~) lages
Zem, aleqsandre makedonelis mxedarTmTavarma
da megobarma egvi pte sammarTvelod miiRo didi
aleqsandres gardacvalebis Semdeg diadoqosebs
Soris atexili brZolis Sedegad, Zv. w. 305
Tavi mefed gamoacxada (Zv. w. 305-283) da
ptolomeebis _ lagidebis* dinastias safuZ-
veli Cauyara. man Tavis sasaxleSi miiwvia
aristoteles moswavle demetria falerski
da daavala Seeqmna aristoteles skolis _
`likeis~ (liceumis) msgavsi skola. ase Seiqmna
aleqsandriis museioni, romlis biblioTekaSi
Tavi mouyares aristoteles Sromebs.
ptolomei II filadelfosi (
`dis mosiyva-
rule
~) (Zv. w. 285-246) xelovnebasa da
mecnierebas mfarvelobda da misi mmarTvelobis
dros q. aleqsandria, kerZod museioni elinis-
turi kulturis centri gaxda. aq saxelmwifos
xarjze mecnierebi erTad cxovrobdnen. maT
gankargulebaSi ori didi biblioTeka iyo, sadac
Zv. w. 48-Si 700 000 tomi inaxeboda. male
biblioTelkam wignebis gamocema daiwyo, rasac
xeli Seuwyo egvi ptis papirusis arsebobam
(saweri masalis damuSavebaSi egvi ptes buneb-
rivi monopolia hqonda). es pirobebi gansakuT-
rebiT uwyobdnen xels mecnierebis ganviTarebas.
msoflios yvela kuTxidan aleqsandriaSi Tavs
iyridnen mecnierebi da mTeli antikuri**
periodis ganmavlobaSi aq mecnieruli skolebi
gaifurCqna. amitom elinistur periodSi, bunebis
movlenebis kvlevaSi garkveuli warmatebebi
aleqsandriis museionerebTanaa dakavSirebuli.
es warmatebebi garkveul wilad arqimedes
saxelTanacaa dakavSirebuli.
Zv, w, 287 sirakuzSi (sicilia), cnobili
astronomis, fideas ojaxSi daibada Zveli
berZeni mecnieri arqimede. didi drois ganmav-
lobaSi igi aleqsandriaSi swavlobda da mTeli
Tavisi sicocxlis manZilze museionebis
swavlulebTan mecnieruli kavSiri ar gauwyve-
tia. am udidesma moazrovnem: inJinerma, astro-
nomma, fizikosma, maTematikosma Tavisi SromebiT
xeli Seuwyo kacobriobis ganviTarebas da
waruSleli kvali datova istoriaSi. am geni-
osis naazrevi yovelTvis aRfrTovanebas iwvevs.
man aRmoaCina sxeulTa curvis kanoni, berketis
wonasworobis piroba da simZimis centris
`momeciT sayrdeni wertili
da dedamiwas avwev
~.
arqimede
* ptolomeebi, lagidebi (berZ. Ptolemaioi, Lagidai), samefo dinastia elenistur (epoqa, rodesac ayvavebuli iyo
Sereuli berZnul-aRmosavluri kultura _ aleqsandre makedonelis monarqiis daSlidan romis mier saberZneTisa da
aRmosavleTis dapyrobamde _ Zv. w. I saukune) egvipteSi.
** antikuri (laT. antiguus _ Zveli) _ Zveli berZnuli an romauli (kultura, xelovneba, sazogadoebrivi wyoba da sxva).
|