Müəyyən inteqralın tərifi. Tərif



Yüklə 303 Kb.
səhifə8/11
tarix15.11.2019
ölçüsü303 Kb.
#29589
1   2   3   4   5   6   7   8   9   10   11
mueyyen inteqral

Nyuton-Leybnis düsturu.
Müəyyən inteqral bəhsində qeyd etdik ki, verilmiş funksiyanın müəyyən inteqralı həmin funksiya üçün düzəldilmlş ∫ cəminin limitidir. Lakin qeyd etmək lazımdır ki, bu üsulla müəyyən inteqralı hesablamaq əlverişli üsul deyildir. Çünki bu üsuldan istifadə etdikdə mürəkkəb cəminin limitini tapmaq lazım gəlir. Bu da cox vaxt mümkün olmur və ya müəyyən texnikİ cətinliklərlə bağlı olur. Bu səbəbdən də müəyyən inteqralın hesablanması üçün əlverişli olan Nyuton – Leybnis düsturunu öyrənmək lazım gəlir.

Teorem. parçasında kəsilməyən ƒ(x) funksiyasıının ibtidai funksiyalarından biri Ф (x) funksiyasıdırsa , onda


(1)

düsturu doğrudur. (1) Düsturuna Nyuton – Leybnis düsturu deyilir.

İsbatı . Şərtə görə Ф (x) funksiyası [a,b] parçasında kəsilməyən funksiysının ibtidai funksiyalarından biridir. Bilirik ki, funksiyası da həmin funksiyanın ibtidai funksiyasıdır. Verilmiş funksiyanın iki ibtidai funksiyası bir birindən ancaq sabit bir ədədlə fərqlənə bilər. Buna görə də

(2)

olmalıdır. Bu bərabərlikdə x=a götürsək və olduğunu nəzərə alsaq ,

c=-Ф(a) taparıq. Bu qiyməti (2) bərabərliyində yerinə yazıb , sonra da alınan bərabərlikdə x = b götürsək ;



(3)

alarıq.



Yüklə 303 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin