O’zbekiston respublikasi oliy va o’rta maxsus ta’lim vazirligi farg’ona davlat universiteti Iqtisodiyot yo‘nalishi


o’rtacha kvadratik chetlanish topilsin



Yüklə 0,6 Mb.
səhifə6/11
tarix13.09.2023
ölçüsü0,6 Mb.
#143148
1   2   3   4   5   6   7   8   9   10   11
математика тайёри 2 (2)

o’rtacha kvadratik chetlanish topilsin.


Yechish. M(X) matematik kutilma quyidagiga teng:
.
matematik kutilma quyidagicha:
.
Dispersiyani topamiz:
.
Izlanayotgan o’rtacha kvadratik chetlanish quyidagiga teng:

.
1.3 Uzliksiz tasodifiy miqdorning sonli xaraktristikalari
Diskret tasodifiy miqdorlar kabi uzluksiz tasodifiy miqdorlar ham sonli xarakteristikalarilarga ega. Uzluksiz tasodifiy miqdorning matematik kutilmasi va dispersiyasini ko’rib chiqaylik.
X uzluksiz tasodifiy miqdor zichlik funktsiyasi bilan berilgan bo’lsin va bu tasodifiy miqdorning mumkin bo’lgan qiymatlari kesmaga tegishli bo’lsin.
Mumkin bo’lgan qiymatlari kesmaga tegishli bo’lgan X uzluksiz tasodifiy miqdorning matematik kutilmasi deb quyidagi aniq integralga aytiladi:
. (1.3.1)
Agar mumkin bo’lgan qiymatlar butun Ox sonli o’qqa tegishli bo’lsa, u holda matematik kutilma quyidagi ko’rinishga ega
. (1.3.2)
Mumkin bo’lgan qiymatlari kesmaga tegishli bo’lgan X uzluksiz tasodifiy miqdorning dispersiyasi deb quyidagi aniq integralga aytiladi:
. (1.3.3)
Agar mumkin bo’lgan qiymatlar butun Ox sonli o’qqa tegishli bo’lsa, u holda dispersiya quyidagi ko’rinishga ega
. (1.3.4)
Dispersiyani hisoblash uchun mos ravishda
(1.3.5)
va
(1.3.6)
formulalar qulayroq.
Diskret tasodifiy miqdorlar matematik kutilmasi va dispersiyasining xossalari uzluksiz tasodifiy miqdorlar uchun ham saqlanadi.
Uzluksiz tasodifiy miqdorning o’rtacha kvadratik chetlanishi diskret tasodifiy miqdor uchun bo’lgani kabi quyidagi tenglik bilan aniqlanadi
. (1.3.7)
6-misol. Quyidagi taqsimot funktsiyasi bilan berilgan X tasodifiy miqdorning matematik kutilmasi, dispersiyasivao’rtacha kvadratik chetlanishi topilsin:

Yüklə 0,6 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin