REFERENCES
1.
Purnima Manocha, Dr. SR Wakode, Avneet Kaur, Keshav Anand, Hitesh Kumar. A review: Im-
idazole synthesis and its biological activities. International Journal of Pharmaceutical Science and
Research, 2016, V. 1 (7), p. 12-16.
2.
Delia Hernandez Romero, Victor E. Torres Heredia, Oscar Garcia-Barradas, Ma. Elizabeth
Marquez Lopez & Esmeralda Sanchez Pavon. Synthesis of Imidazole Derivatives and Their Biolog-
ical Activities. Journal of Chemistry and Biochemistry, 2014, V. 2(2), p. 45-83.
3.
Vijayta Gupta, Vinay Kant. A Review on Biological Activity of Imidazole and Thiazole Moieties
and their Derivatives. Science International, 2013, V. 1 (7), p. 253-260.
4.
Arunkumar S Suvarna. Imidazole and its derivatives and Importance in the Synthesis of
Pharmaceuticals: A Review. Research Journal of Chemical Sciences, 2015, V. 5(10), p. 67-72.
5.
Rajesh Kumar Singh, Ashish Bhatt and Ravi Kant. Design and synthesis of some novel imidazole
derivatives as potent antimicrobial & antimalarial agents. Der Pharmacia Lettre, 2016, V. 8 (7), p.
188-194.
6.
Rohit Singh, Swastika Ganguly. Design, Synthesis and Evaluation of Some Novel 1-phenyl-3-(5-
phenyl-1H-imidazol-1-yl) Thiourea Derivatives as Anti-HIV Agents. Indian Journal of Pharmaceu-
tical Education and Research, 2018, V. 52 (4), p. 655-665.
7.
Kumari Shalini, Pramod Kumar Sharma, Nitin Kumar. Imidazole and its biological activities: A
review. Der Chemica Sinica, 2010, V. 1 (3), p. 36-47.
8.
Munish Kumar, Deepak Kumar and Vinit Raj, Studies on Imidazole and its Derivatives with Par-
ticular Emphasis on Their Chemical/biological Applications as Bioactive Molecules/Intermediated
to Bioactive Molecule. Current Synthetic and Systems Biology. 2017, V. 5 (1), p. 1-10.
9.
Bhatnagar A., Sharma P. K., Kumar N. A Review on “Imidazoles”: Their Chemistry and Pharma-
cological Potentials. International Journal of PharmTech Research, 2011, V. 3 (1), p. 268-282.
KIMYA
ELMLƏRİ
35
10.
T. Yanardag, S. Özbay, S. Dinçer and A. A. Aksüt. Corrosion Inhibition Efficiency of Benzi-
midazole and Benzimidazole Derivatives for Zinc, Copper and Brass. Asian Journal of Chemistry,
2012, V. 24 (1), p. 47-52.
11.
Debus, Heinrich.
Ueber die Einwirkung des Ammoniaks auf Glyoxal
. Justus Liebigs Annalen
der Chemie, 1858, V. 107 (2), p. 199-208.
12.
Anshul Chawla, Ashu Sharma, Anil kumar Sharma. Review: A convenient approach for the
synthesis of imidazole derivatives using microwaves. Der Pharma Chemica, 2012, V. 4 (1), p. 116-
140.
13.
B. Radziszewski. Ueber die Constitution des Lophins und verwandter Verbindungen // Ber.
Dtsch. Chem. Ges., 1882, V. 15, p. 1493-1496.
14.
B. Radziszewski. Ueber Glyoxalin und seine Homologue. Ber. Dtsch. Chem. Ges., 1882, V.
15, p. 2706-2708.
15.
Shital G. Dandale, P. R. Solanki. Efficient synthesis and characterisation of imidazoles under
microwave irradiation. Rasayan J. Chem., 2011, V. 4 (4), 875-878
16.
Francis R. Japp, Edgar Wilcock. On the Action of Aldehydes on Phenanthraquinone in Presen-
ce of Ammonia. (Second Notice). Journal of the Chemical Society, Transactions, 1881, V. 39, p.
225-228.
17.
Sidhanath V. Bhosale, Mohan B. Kalyankar, Santosh V. Nalage, Dattatry S. Bhosale, Swati L.
Pandhare, Trupti V. Kotbagi, Shubhangi B. Umbarkar, Mohan K. Dongare. One-pot synthesis of
2,4,5-trisubstituted imidazoles using MoO
3
/SiO
2
, an efficient and recyclable catalyst. Communicati-
ons, 2011, V. 41(5), p. 762–769.
18.
Majid M. Heravi, Khadijeh Bakhtiari, Hossein A. Oskooie, Shima Taheri. Synthesis of 2,4,5-
triaryl-imidazoles catalyzed by NiCl2·6H2O under heterogeneous system. Journal of Molecular Ca-
talysis A: Chemical, 2007, V. 263(1-2), p. 279–281.
19.
Ratnadeep S. Joshi, Priyanka G. Mandhane, Mohammad U. Shaikh, Rajesh P. Kale, Charan-
singh H. Gill. Potassium dihydrogen phosphate catalyzed one-pot synthesis of 2,4,5-triaryl-1H-imi-
dazoles. Chinese Chemical Letters, 2010, V. 21(4), p. 429–432.
20.
Leila Zamani, Bi Bi Fatemeh Mirjalili, Mansoor Namazian. One-pot synthesis of 2,4,5-trisubs-
tituted-1H-imidazoles promoted by nano-TiCl
4
· SiO
2
: An experimental and theoretical study. Che-
mija, 2013, V. 24 (4), P. 312–319.
21.
Nasibeh Shahrivar Fallah, Masoud Mokhtary. Tin oxide nanoparticles (SnO2-NPs): An effici-
ent catalyst for the one-pot synthesis of highly substituted imidazole derivatives. Journal of Taibah
University for Science, 2015, V. 9 (4), p. 531–537.
22.
Saikat Das Sharma, Parasa Hazarika, Dilip Konwar. An efficient and one-pot synthesis of 2,4,5-
trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl
3
∙ 3H
2
O. Tetrahedron Let-
ters, 2008, V. 49 (14), p. 2216–2220.
23.
Adel A. Marzouk, Vagif M. Abbasov, Avtandil H. Talybov. Short Time One-Spot Synthesis of
2, 4, 5-TrisubstitutedImidazoles Using Morpholinium Hydrogen Sulphate as Green and Reusable
Catalysts. Chemistry Journal, 2012, V. 02 (05), p. 179-184.
24.
Ahmad R. Khosropour. Synthesis of 2,4,5-trisubstituted imidazoles catalyzed by [Hmim]HSO4
as a powerful Brönsted acidic ionic liquid. Canadian Journal of Chemistry, 2008, V. 86(3), p. 264–
269.
25.
Mohammad Alikarami, Mozhgan Amozad. One-pot synthesis of 2,4,5-trisubstituted imidazole
derivatives catalyzed by btppc under solvent-free conditions. Bull. Chem. Soc. Ethiop. 2017, V.
31(1), p. 177-184.
26.
Shapi A. Siddiqui, Umesh C. Narkhede, Sanjay S. Palimkar, Thomas Daniel, Rajgopal J. Lahoti
and Kumar V. Srinivasan. Room temperature ionic liquid promoted improved and rapid synthesis of
2,4,5-triaryl imidazoles from aryl aldehydes and 1,2-diketones or α-hydroxyketone. Tetrahedron,
2005, V. 61(14), p. 3539–3546.
GƏNC TƏDQİQATÇI, 2020, VI cild, №1
36
27.
Adel A. Marzouk, Vagif. M. Abbasov, Avtandil H. Talybov, Shaaban Kamel Mohamed. Syn-
thesis of 2,4,5-triphenyl imidazole derivatives using diethyl ammonium hydrogen phosphate as gre-
en, fast and reusable catalyst. World Journal of Organic Chemistry, 2013, V. 1(1), p. 6-10.
28.
Abolghasem Davoodnia, Majid M. Heravi, Zahra Safavi-Rad, Niloofar Tavakoli-Hoseini. Gre-
en, one-pot, solvent-free synthesis of 1,2,4,5-tetrasubstituted imidazoles using a brønsted acidic ion-
ic liquid as novel and reusable catalyst. Synthetic Communications, 2010, V. 40 (17), p. 2588–
2597.
29.
Jian-Feng Zhou, Gui-Xia Gong, Xiao-Jun Sun, and Yu-Lan Zhu. Facile method for one-step
synthesis of 2,4,5-triarylimidazoles under catalyst-free, solvent-free, and microwave-irradiation
conditions. Synthetic Communications, 2010, V. 40 (8), p. 1134–1141.
30.
Alexander Ya. Usyatinsky, Yuri L. Khmelnitsky. Microwave-assisted synthesis of substituted
imidazoles on a solid support under solvent-free conditions. Tetrahedron Letters, 2000, V. 41 (26),
p. 5031–5034.
31.
Liu-qing Yan, Yao Chen, Xiao-fu Sun, Mao-jun You, Xiao-dong Chen, Qiang Gu, Yu-min
Zhang. Microwave-assisted solvent-free catalyzed synthesis and luminescence properties of 1,2,4,5-
tetrasubstituted imidazoles bearing a 4-aminophenyl substituent. Chemical Papers, 2016, V. 71 (3),
p. 627–637.
32.
Scott E. Wolkenberg, David D. Wisnoski, William H. Leister, Yi Wang, Zhijian Zhao, and Cra-
ig W. Lindsley. Efficient Synthesis of Imidazoles from Aldehydes and 1,2-Diketones Using Micro-
wave Irradiation. Organic Letters, 2004, V. 6 (9), p. 1453–1456.
33.
Javad Safari, Shiva Dehghan Khalili, Sayed Hossein Banitaba. A novel and an efficient catalyst
for one-pot synthesis of 2,4,5- trisubstituted imidazoles by using microwave irradiation under sol-
vent-free conditions. Journal of Chemical Sciences, 2010, V. 122 (3), p. 437–441.
Dostları ilə paylaş: |