6-mavzu. O’rtacha miqdorlar Reja:
6.1. O’rtacha miqdorlarning mohiyati va ahamiyati.
6.2. O’rtacha arifmetik miqdorlar va ularning qo’llanish sohalari.
6.3. O’rtacha arifmetik xossalari.
6.4. O’rtacha arifmetikni «shartli moment» usulida hisoblash tartibi.
6.5. O’rtacha geometrik miqdorlar.
6.6. O’rtacha garmonik miqdorlar va ularning qo’llanish sohalari.
6.7. Moda va mediana.
6.1. O’rtacha miqdorlarning mohiyati va ahamiyati Umumiy holda o’rtacha miqdor taqsimot qatorini siqib ixchamlash-tirish jarayonida olingan miqdordir. U qatorning katta va kichik hadlari o’rtasida yotadi
Masalani soddalashtirish uchun statistik qatorni yon bag’ridan siqib asta-sekin ixchamlashtirayotirmiz, deb faraz qilaylik. Bu holda uning variantalari orasidagi miqdoriy farqlar yoqala borib, ular yiriklashadi, soni esa kamayadi. SHuning hisobiga qator variantlarining soni ko’payadi. Ixchamlashtirish jarayonini davom ettiraversak, pirovard natijada qator variantasi bir miqdor bilan ifodalanadi. Variantlar soni esa boshlang’ich qatorning jamlama soniga teng bo’ladi. Ana shu miqdor ushbu qatorning o’rtacha miqdoridir. U qatorning eng katta va eng kichik miqdorlari o’rtasida yotadi. Bu yerda statistik qator deganda sof matematik qator, ya’ni musaffo sonlar qatori nazarda tutiladi. Bu sonlar na sharoitga va na bir-biriga bog’liq, to’liq erkinlikka ega.
Statistik qatorlar matematik sonlar qatoridan tubdan farq qiladi. Ular moddiy dunyo hodisalarini ta’riflovchi ko’rsatkichlar qatoridir.
O’rtacha statistik to’plamni umumlashti-rib ta’riflovchi ko’r-satkichdir
SHunday qilib, o’rganilayotgan statistik to’plamni o’zgaruvchan belgilari bo’yicha umumlashtirib ta’riflaydigan ko’rsatkichlar o’rtacha miqdorlar deb ataladi.
O’rtacha o’z funk-tsiyalarini to’la va aniq bajarish uchun bir qator talablarga javob berishi kerak.
O’rtacha miqdor o’zining funktsiyalarini to’la va aniq ado etishi uchun quyidagi shart-sharoitlar mavjud bo’lishi lozim:
1. o’rtacha miqdori aniqlanadigan to’plam bir jinsli, hajm jihatdan yetarli sonda bo’lishi kerak.
2. o’rganilayotgan to’plam birliklariga tegishli belgining miqdoriy qiymatlari bo’yicha ularning taqsimoti yetarli darajada hodisaga xos ob’ektiv taqsimot qonuniyati bilan hamohang va mos shaklda bo’lishi zarur. Bu talab katta sonlar qonuni amal qilishidan kelib chiqadi.