TO'PLAMLARNING KESISHMASI VA UNING XOSSALARI.
Ikkita to'plam berilgan bo'lsin: A={a;b;c;d} va B={c;d;e}.A va B to'plamga tegishli bo'lgan umumiy elementlardan iborat yangi P to'plamni tuzamiz. P={c;d} . P to'plam A va B to'plamlarning kesishmasidan iborat.
Ikki to'plamning umumiy elementlaridan tashkil topgan uchinchi to'plamga to'plamlarning kesishmasi deb aytiladi. A n B deb belgilanadi. Bu erda n simvoli to'plamlar kesishmasining belgisidir. A n B to'plamning har qanday x elem`````````````````````````````````````````````enti "x e A" va "xe B" xossasiga ega, shunga ko'ra to'plamlar kesishmasini quyidagicha yozish mumkin: A n B={x/xe A va xe B}
Agar A va В to'plamlar umumiy elementga ega bo'lmasa, u holda bu to'plamlar kesishmaydi va A ^ B= 0 deb yoziladi. Masalan, bir xonali va ikki xonali natural sonlar to'plami kesishmaydi.
Agar A va В to'plamlar kamida bitta umumiy elementga ega bo'lsa, bu to'plamlar kesishmasi 0 to'plam bo'lmaydi va A r\ В ^ 0 yoziladi.
Eyler-Venn diagrammasida to'plamlar kesishmasi quyidagicha ifodalanadi:
To'plamlar kesishmasining xossalari:
Istalgan A va B to'plamlar uchun to'plamlar kesishmasi kommutativdir, ya'ni A n B=B n A
Ixtiyoriy A,B,C to'plamlar uchun to'plamlar kesishmasi assotsiativdir.
(A n B) n C = A n (B n C)
Bu xossa An B n C ifodani qavssiz yozishga imkon beradi, shuningdek, istalgan sonli to'plam kesishmasini topishda ham xossadan keng foydalaniladi.
Isboti: To'plam osti munosabatining 1- xossasidan foydalanamiz, ya'ni "Agar B ^ A va A ^ B bo'lsa, u holda A=B bo'ladi. xe (A n B)n C bo'lsin, kesishma ta'rifiga asosan x e An B va xeC; yana bir marotaba to'plamlar kesishmasi ta'rifini qo'llab x e A va xeB, xeC yoki xe A, xeB va xeC ni hosil qilamiz. Bundan xeA va xeBnC, bundan xe An (BnC).Demak, (A n B) n C to'plamning har qanday elementi A n (B n C) to'plamining ham elementi bo'ladi, to'plam osti ta'rifiga ko'ra (A n B)n C ^ A n (B n C). Xuddi shunga o'xshash A n (B n C) ^ (A n B)n C ni ham ko'rsatish mumkin. Yuqorida aytilgan to'plam osti munosabati xossasiga ko'ra to'plamlar kesishmasining assotsiativlik xossasi tasdiqlanadi: (A n B) n C
= A n (B n C)
xossa: Agar A ^ B bo'lsa, u holda A n B=A. Haqiqatdan ham , agar AB to'plamning to'plam ostisi bo'lsa, bu to'plamlar orasidagi munosabat Eyler - Venn doirasida quyidagicha tasvirlanadi.
A va B ga tegishli elementlar A to'plamning elementlari hisoblanadi, ya'ni A n B=A.
xossa: Istalgan A to'plam uchun quyidagi yozuv o’rinli:
A^A=A; A^ 0=0; A^J=A; Jn0=0.
Ikki to'plamdan yangi to'plam hosil qilishning yana bir usulini ko'rib chiqamiz.
Ta'rif: A va B to'plamlarning barcha elementlaridan tuzilgan to'plamga to'plamlarning birlashmasi deb aytiladi . A va B to'plamlar birlashmasi A ^ B kabi belgilanadi, bu erda ^ simvoli birlashma belgisidir.
Masalan: 1) A={m,n,p,k,l} va B={p,r,s,n} to'plamlarning birlashmasi A^ B={m,n,p,k,l,r,s} dan iborat.
A- biror sinfdagi voleybol to'garagiga qatnashuvchi o'quvchilar to'plami: B- shu sinfdagi matematika to'garagiga qatnashuvchi
o'quvchilar to'plami. A ^ B to'plamga voleybol yoki matematika to'garagiga qatnashuvchi o'quvchilar kiradi. Bular orasida faqat matematika to'garagiga qatnashuvchi, yoki faqat voleybol to'garagiga qatnashuvchi, yo bo'lmasa, ham voleybol, ham matematika to'garagiga qatnashuvchi o'quvchilar bo'lishi mumkin.
A ^ B to'plamning ixtiyoriy x elementi "x e A yoki xeB" xossaga ega. Ta'rifga asosan to'plamlar birlashmasini quyidagicha yozish mumkin:
A ^ B={x/xe A yoki xe B}
Eyler-Venn diagrammalarida A u B quyidagicha tasvirlanadi:
Birlashma amalining xossalari:
xossa: To'plamlarning birlashmasi kommutativlik xossasiga ega:
A u B=B u A
xossa: Ixtiyoriy A,B,C to'plamlarning birlashmasi assotsiativlik
xossasiga ega :
(A u B) u C= A u (B u C)
Bu xossa ham kesishma amaliga o'xshash (Au B)u C ifodani qavssiz yozish mumkinligini ko'rsatadi, ya'ni A u B u C shaklda yozish mumkin. Isbot: xe (A u B)u C bo'lsin, ta'rifga asosan, x e A u B yoki xe C, bu erdan xe A, yoki xe B yoki xe C. To’plamlar birlashmasi ta’rifiga ko’ra xe A u (B u C)
Demak, (A u B) u C to'plamining har bir elementi A u (B u C)to'plamining ham elementi bo'lyapti, to'plam osti munosabati ta'rifiga ko'ra
(A u B) u C c A u (B u C) (1)
Xuddi shunday teskarisini ham isbotlash mumkin , ya'ni A u (B u C) c (A u B) u C (2)
Bu (1) va (2) munosabatlarga to'plam ostining 1-xossasini qo'llasak, to'plamlarning tengligi kelib chiqadi, ya'ni (A u B)u C= A u (B u C)
xossa: Agar B c A bo'lsa, unda A u B=A bo’ladi.
Misol: 1) A=Z ; B=N; Z u N=Z 2)A={1,2,3,4,5,6,7,8,9}
B={2,4,6,8}, BcA , AuB=A
xossa: Istalgan A, B va C to'plamlar uchun quyidagi tengliklar o'rinlidir:
A u (B n C)=(A u B) n (A u C)
A n (B u C)=(AnB) u (An C).
Bu xossalar distributivlik xossasi deb aytiladi.
Isbot: xe An(B u C)bo'lsin. To’plamlar kesishmasi ta’rifiga ko’ra x e A va xeBuC. To’plamlar birlashmasi ta’rifini qo’llab xeA va xeB yoki xe A va xe C hosil bo’ladi. To’plamlar kesishmasi ta’rifiga ko’ra xe An B yoki xe A n C. To’plamlar birlashmasi ta’rifini qo’llab xe (AnB) u (An C). To’plam osti munosabati ta’rifiga ko’raA n (B u C) c (AnB) u (An C).
Xuddi shunday ko'rsatish mumkinki,
(A n B) u (A n C) c A n (B u C). (2)
To'plam osti munosabatining 1-xossasiga ko'ra
A n (B u C)=(A n B) u (A n C) bo'ladi.
xossa: Ixtiyoriy A to'plam uchun quyidagi tengliklar o'rinli:
A^A=A; A^0=A; A^J=J; J^0=J. TO'PLAMLARNING AYIRMASI VA UNING XOSSALARI.
Ta'rif: A va B toplamlarning ayirmasi deb, A to'plamning B to'plamga kirmaydigan elementlar to'plamiga aytiladi.
To'plamlar ayirmasi A\B simvoli bilan belgilanadi, ayrim kitoblarda A-B kabi belgilanadi.
Misol: A={a,b,c,d} B={c,d,e,f} To'plamlar ayirmasi A\B={a,b} A\B to'plamining istalgan x elementi "x tegishli A va tegishli emas B" xossasiga ega bo'lgani uchun A va B to'plamlar ayirmasini quyidagicha yozish mumkin:
A\B={x/x e A va x £ B}Eyler - Venn diagrammalarida to'plamlarning ayirmasi quyidagicha tasvirlanadi:
Misol:A={a,b,c,d,e} va B={c,d,e,f} bo'lsin. A/B={a,b} ekanligi ma'lum. B va A to'plamlar ayirmasini topamiz: B/A={f} A/B va B/A to'plamlar birlashmasi (A/B ) u ( B/A) = {a,b,f} (1)
ko'rinishda bo'ladi. Endi A u B va A n B ni topamiz.
A u B ={a,b,c,d,e,f} A n B ={c,d,e} bu to'plamlar ayirmasini topamiz : (A u B)/(A n B )={a,b,f} (2)
(1) va (2) ni solishtirib quyidagi tenglikka ega bo'lamiz:
(A/B) u (B/A)= (A u b)/(A n B )
Ta'rif: Ikkita A va B hamda B va A to'plamlar ayirmalarining birlashmasiga simmetrik ayirma deyiladi. U quyidagicha belgilanadi:
A A B=(A/B) u (B/A)
A,B,C to'plamlar uchun quyidagi tenglik o'rinli:
A/ (B n C) = (A/B) u (A/C)
A/ (B u C) = (A/B) n (A/C
Dostları ilə paylaş: |