§1. Xətti tənliklər sistemi haqqında anlayış.
(1)
şəklində olan sistem n məchullu m xətti tənliklər sistemi və ya xətti sistem adlanır, burada aij , bi ( ) – ədədlərdir. Tənliklərin sağ tərəflərindəki ədədlərinin hamısı sıfra bərabər olarsa, onda həmin sistemə bircins xətti tənliklər sistemi deyilir. ədədlərinin heç olmasa biri sıfırdan fərqli olduqda (1) sisteminə bircins olmayan xətti tənliklər sistemi deyilir. Sistemə daxil olan tənliklərin hər birini ödəyən qiymətlər çoxluğuna həmin sistemin həlli deyilir.
Verilmiş sistemin həlli ola da bilər, olmaya da bilər; sistemin həlli varsa, ona uyuşan və ya birgə sistem, əks halda isə uyuşmayan və ya birgə olmayan sistem deyilir. Tənliklər sistemi uyuşan olduqda onun bir və ya birdən çox həlli ola bilər. Tənliklərin sayı məchulların sayına bərabər olanda sistemə kvadrat sistem deyilir.
(1) xətti tənliklər sistemini matris tənliyi şəklində yazmaq olar.
Məchulların əmsallarından düzəlmiş matrisi A, sağ tərəfdəki məlum ədədlərdən düzəlmiş sütun-matrisi B, axtarılan məchullardan düzəlmiş sütun-matrisi isə X ilə işarə edək:
, , .
A matrisin sütunlarının sayı X matrisinin sətirlərinin sayına bərabər olduqdan, AX hasilini tapa bilərik
.
(1) tənliklər sisteminin sağ tərəfi B sütun-matrisin elementləridir və buna görə də matrislərin bərabərliyi şərtinə əsasən
AX = B (2)
yazmaq olar. (2) tənliyinə matris-tənlik deyilir.
§2.
Dostları ilə paylaş: |