15. Funksiyanın törəməsi. Törəmənin həndəsi mənası. Funksiya qrafikinə nöqtədə toxunanın tənliyi.
törəmə -funksiyanin hər hansı verilmiş bir nöqtədə dəyişmə sürətini göstərir. y=f(x) funksiyası hər hansı a nöqtəsində kəsilməzdirsə, arqumentin sonsuz kiçilən artımına funksiyanın da sonsuz kiçilən artımı uyğun olur ki, bu təklifin əksi də doğrudur. Yəni arqumentin a nöqtəsindəki sonsuz kiçilən artımına funksiyanın da bu nöqtədə sonsuz kiçilən artımı uyğundursa, funksiya bu nöqtədə kəsilməzdir. Arqument artımı sifra yaxınlaşdıqda funksiya artımının arqument artımına nisbətinin limiti varsa, bu limitə f(x) funksiyasının a nöqtəsində törəməsi deyilir.
İndi isə funksiyanın törəməsinin həndəsi mənasına keçək
Fərz edək ki, (a,b) intervalında törəməsi olan y = f (x) funksiyası
verilmişdir. Bu intervaldan hər hansı bir 0 x nöqtəsini götürək. y= f (x) işarə
edək. x-ə 0 x nöqtəsində elə x artımı verək ki, 0 x + x nöqtəsi də (a,b) intervalına
daxil olsun. x-in x0 qiymətinə y = f (x) funksiyasının qrafiki üzərində M x f x, 0 x + x qiymətinə isə P( x0 + x ,f ( x0 + x )) nöqtəsi uyğundur.
Dostları ilə paylaş: |