6. Quyunun optimal rejimdə istismara buraxılması. Quyunun optial rejimi o rejimə deyilir ki, quyudan mümkün qədər çox neft və qaz hasil edilsin, mümkün qədər az su və mexaniki qarışıqlar olsun. Quyunun optimal iş rejimini təyin etmək üçün onu qərarlaşmış iş rejimlərində tədqiq edərək indikator dioqramlarını qururlar və bundan başqa quyunun tənzimləmə əyrilərini qururlar. Fontan quyularında tənzimləmə əyrilərini qurmaq üçün quyunun iş rejimi bir neçə dəfə dəyişdirilir. Hər bir rejimdə qərarlaşmış rejimin əldə edilməsindən sonra quyu məhsulundan 0,5 litr nümunə götürülərək neft laboratoriyasına göndərilir. Bu nümunələrin tərkibindəki emulsiya suyunun və mexaniki qarışıqların miqdarı təyin edilir.
Fontan quyuları üçün quyunun bütün istismar göstəriciləri ilə (neft debiti, su debiti, qaz debiti, qaz amili, məhsulun sulaşması, mexaniki qarışıqların miqdarı və s.) ştuserin diametri arasındakı asılılıqlar qurulur. Tənzimləmə əyrilərinin köməyi ilə optimal rejim tapılır.
Quyunun optimal rejimdəki debitinə onun debit norması deyilir.
24. Qaz laylarının açılma mərhələləri və onun qısa izahı. Perforation involves creating holes or channels in the casing and cement of the wellbore to establish a direct pathway for oil or gas to flow from the reservoir into the well. This process typically involves the following steps and periods:
1. Pre-Perforation Planning:
Reservoir engineers start by analyzing a variety of data about the gas reservoir, such as well logs, seismic surveys, rock properties, and fluid characteristics. This data helps them identify the most productive zones within the reservoir where gas is likely to flow. The goal is to select the best locations for perforation to maximize gas recovery.
2. Perforation Design:
Based on the analysis, engineers design the perforation strategy. They determine the depth at which to place the perforations, the angle at which they will be drilled, and the spacing between them. The design aims to ensure that the perforations penetrate the most porous and permeable parts of the reservoir rock, providing an effective pathway for gas to flow into the wellbore.
3. Perforation Execution:
Perforation is carried out using specialized tools known as perforating guns. These guns are lowered into the wellbore on a wireline or tubing. The guns are equipped with charges that, when detonated, create holes through the casing and cement of the well. These holes connect the wellbore to the reservoir, allowing gas to enter the wellbore.
4. Cleanout and Debris Removal:
During the perforation process, some debris, rock fragments, and other materials may enter the wellbore. This debris needs to be removed to prevent blockages and ensure efficient gas flow. Cleanout operations may involve running tools downhole to mechanically remove debris or using fluids to wash it out.
5. Well Testing and Evaluation:
After perforation and cleanout, the well may undergo testing to assess its initial performance. Well testing involves temporarily flowing gas or fluids from the well to the surface while measuring pressure and flow rates. This testing helps engineers understand the reservoir's productivity, pressure, and other key parameters. The results guide decisions about production strategies.
6. Production Initiation:
Once the perforation and testing stages are successfully completed, the well is ready to be put into full production mode. Gas flows from the reservoir through the perforations and into the wellbore. It is then lifted to the surface using pumps, natural pressure, or other methods, and further processing is carried out to separate impurities and prepare the gas for distribution or commercial use.