4-misol.
2
2
1
(2
3
4)
x
x
dx
−
−
+
∫
aniq integralni hisoblang.
Nyuton–Leybnis formulasi va (5) formulaga ko‘ra:
2
2
3
2
2
1
1
2
3
22
37
81
(2
3
4)
(
4 )
(
)
13,5.
3
2
3
6
6
x
x
dx
x
x
x
−
−
∆
−
+
=
−
+
=
− −
=
=
∫
(kv. birlik).
Javob:
13,5 kv. birlik.
▲
5-misol.
3
2
0
sin (3
)
6
S
x
π
π
=
+
∫
p
p
dx
aniq integralni hisoblang.
100
101
Avval aniqmas integralni topamiz:
2
1
1
1
sin (3
(1 cos(6
))
(
sin(6
)).
6
2
3
2
6
3
x
dx
x
dx
x
x
π
π
π
+
=
−
+
= ⋅ −
+
∫
∫
2
1
1
1
sin (3
(1 cos(6
))
(
sin(6
)).
6
2
3
2
6
3
x
dx
x
dx
x
x
π
π
π
+
=
−
+
= ⋅ −
+
∫
∫
3
2
0
sin (3
)
6
S
x
dx
π
π
=
+
∫
p
p
p
U holda
3
0
1
1
1
1
(
sin(6
))
(
sin(2
.
2
6
3
2 3 6
3 6
S
x
x
π
π
π
π π
π
=
−
+
= ⋅
−
+ =
p
1
1
1
1
·(
sin(2
))
(0
sin )
3
2 3 6
3
2
6
3
0
π
π
π
π
π
=
−
+
−
−
=
p p
p
p
p
1
1
sin
sin
.
6 12
3 12
3 6
π
π
π π
= −
+
=
p
p
p p
Javob:
.
6
S
π
=
p
▲
6-misol.
6
2
2
3
x
−
∫
dx
aniq integralni hisoblang.
Avval aniqmas integralni topamiz:
Integrallar jadvaliga ko‘ra
3
2
1
2
3
(2
3)
.
3
x
dx
x
C
−
= ⋅
−
+
∫
U holda
6
3
3
3
6
2
2
2
2
2
1
1
1
26
2
2
3
(2
3)
(2 6 3)
(2 2 3)
(27 1)
8 .
3
3
3
3
3
x
dx
x
−
= ⋅
−
= ⋅
⋅ −
− ⋅ −
= ⋅
− =
=
∫
6
1
6
3
3
3
6
2
2
2
2
2
1
1
1
26
2
2
3
(2
3)
(2 6 3)
(2 2 3)
(27 1)
8 .
3
3
3
3
3
x
dx
x
−
= ⋅
−
= ⋅
⋅ −
− ⋅ −
= ⋅
− =
=
∫
Javob:
2
8 .
3
▲
Aniq integral quyidagi xossalarga ega:
1.
( )
0.
a
a
f x dx
=
∫
Chindan ham,
( )
( )
( ) 0.
a
a
f x dx F a F a
=
−
=
∫
2.
( )
( )
( );
b
a
f x dx F b F a
∆
=
−
∫
( )
( ) .
a
a
a
b
f x dx
f x dx
= −
∫
∫
Δ
( )
( )
( );
b
a
f x dx F b F a
∆
=
−
∫
(
)
( )
( )
( )
( )
( ) .
a
b
f x dx F a F b
F b F a
=
−
= −
−
∫
Demak,
( )
( )
( )
( ) .
a
b
b
a
f x dx F b F a
f x dx
−
=
−
=
∫
∫
▲
102
103
3.
a
,
b
,
c
– haqiqiy sonlar bo‘lsa,
( )
( )
( ) .
a
c
b
b
a
c
f x dx
f x dx
f x dx
=
+
∫
∫
∫
(aniq
integralning additivlik xossasi).
4.
( ),
f x
,
x R
∈
juft funksiya bo‘lsa, u holda
0
( )
2
( )
a
a
a
f x dx
f x dx
−
= ⋅
∫
∫
.
5.
Agar
( ) 0,
f x
≥
[ , ]
x a b
∈
bo‘lsa,
( )
0
b
a
f x dx
≥
∫
bo‘ladi.
6.
[ , ]
x a b
∈
da
( )
( )
f x
g x
<
bo‘lsa, u holda
( )
( )
b
b
a
a
f x dx
g x dx
≤
∫
∫
bo‘ladi.
?
Savol va topshiriqlar
1. Aniq integral nima?
2.
Egri chiziqli trapetsiya yuzini hisoblash masalasini ayting. Misollarda
tushuntiring.
3. Nyuton–Leybnis formulasi nima? Uning mazmun-mohiyatini ayting.
4. Aniq integralning xossalarini ayting. Misollarda tushuntiring.
Mashqlar
Aniq integrallarni hisoblang (
36 – 41
):
36.
1)
2
2
0
3
;
x dx
∫
2)
2
0
2
;
xdx
∫
3)
4
1
5
;
xdx
−
∫
4)
2
3
1
8
;
x dx
⋅
∫
5)
1
1 ;
e
dx
x
∫
6)
4
2
3
1
;
dx
x
∫
7)
2
4
1
1
;
dx
x
∫
8)
1
0
2
;
xdx
∫
9)
4
1
2
;
dx
x
∫
10)
27
3
8
dx
x
∫
;
11)
3
1
2
3
dx
x
−
+
∫
; 12)
3
0
1
x x dx
+
∫
.
37.
1)
2
cos(2
) ;
4
x
dx
π
π
π
+
∫
p
p
p
2)
2
sin 2
;
xdx
π
π
−
∫
p
p
3)
6
0
sin 3 cos3
;
x
xdx
π
∫
p
4)
8
2
2
0
(cos 2
sin 2 ) .
x
x dx
π
−
∫
p
102
103
38.
1)
ln 2
2
0
;
x
e dx
∫
2)
2
4
0
;
x
e dx
∫
3)
3
2
1
(
) .
x
x
e
e dx
−
∫
39.
1)
1
2
1
(
3 ))( 1) ;
x
x x
dx
−
+
−
∫
2)
0
2
1
(
2)(
3) .
x
x
dx
−
+
−
∫
;
3)
3
2
1
1
(
)
;
x
dx
x
+
∫
4)
1
2
2
1
1
(1
) .
dx
x
x
−
−
−
∫
40*.
1)
6
1
;
3
2
dx
x
−
∫
2)
3
0
;
1
dx
x
+
∫
3)
8
4
4
0
(sin 2
cos 2 ) .
x
x dx
π
+
∫
41*.
1)
5
2
1
1 ;
x
x dx
⋅
−
∫
2)
5
2
1
6 10 ;
3
x
x
dx
x
−
+
−
∫
3)
1
2
0
2
4 .
1
x
x
dx
x
+
+
+
∫
42*.
1) Shunday
a
va
b
sonlarni topingki,
f
(
x
)=
a
·2
x
+
b
funksiya
(1) 2,
f
′
=
3
0
( )
7
f x dx
=
∫
shartlarni qanoatlantirsin.
2)
1
(
4 )
6 5
b
b
x dx
b
−
≥ −
∫
tengsizlik bajariladigan barcha
b
>1 sonlarni
toping.
43*.
1)
2
2
3
1
(
(4 4 )
4 )
12
b
b x
x dx
+ −
+
≤
∫
tengsizlik bajariladigan barcha
b
sonlarni toping.
2) Qanday
a
>0 sonlar uchun
3
2
a
x
a
e dx
−
>
∫
tengsizlik bajariladi?
44.
f
(
x
) funksiyani
a
ning ixtiyoriy qiymatida tengliklar bajariladigan
qilib tanlang:
1)
2
0
( )
2
3 ;
a
f x dx
a
a
=
−
∫
2)
2
0
( )
4
;
a
f x dx
a a
=
−
∫
3)
3
2
0
1
3
( )
;
3
2
a
f x dx
a
a
=
−
∫
4)
2
0
( )
sin
a
f x dx a
a
a
=
+ +
∫
.
104
105
Integrallarni hisoblang (
45 – 46
):
45.
1)
1
2
0
(
1)
;
x
e
dx
−
+
∫
2)
1
2
10 2
;
x
x
dx
−
−
−
⋅
∫
3)
1
2
0
(
1)
;
x
e
dx
−
−
∫
4)
1
3
3 6
;
x x
dx
−
−
−
∫
5)
ln3
3
ln 2
x
e dx
−
∫
;
6)
ln5
2
ln3
.
x
e dx
∫
46*.
1)
1
1
0
2 3
;
6
x
x
x
dx
+
+
∫
2)
1
1
1
0
2
5
;
10
x
x
x
dx
−
−
+
∫
3)
1
2
0
2
;
1
e
xdx
x
−
+
∫
4)
2
2
3
2
.
2
e
xdx
x
+
−
∫
;
5)
1
0
3 4
12
x
x
x
dx
+
∫
;
6)
2
0
4 8
x
x
dx
−
⋅
∫
.
47.
x=a, x=b
to‘g‘ri chiziqlar,
Ox
o‘qi va
y=f
(
x
) funksiya grafigi bilan
chegaralangan egri chiziqli trapetsiyaning yuzini toping. Mos rasm
chizing:
1)
a
=1,
b
=2,
f
(
x
)=
x
3
;
2)
a
=2,
b
=4,
f
(
x
) =
x
2
;
3)
a
= – 2,
b
=1,
f
(
x
)=
x
2
+2;
4)
a
=1,
b
=2,
f
(
x
)=
x
3
+2;
5)
,
3
a
π
=
2 ,
3
b
π
=
( ) sin ;
f x
x
=
6)
,
4
a
π
=
,
2
b
π
=
( ) cos .
f x
x
=
48.
Ox
o‘qi va berilgan parabola bilan chegaralangan shaklning yuzini
toping:
1)
2
9
;
y
x
= −
2)
2
16
;
y
x
=
−
3)
2
5
6;
y
x
x
= − +
−
4)
2
7 10;
y
x
x
= − +
−
5)
2
4 ;
y
x
x
= − +
6)
2
3 .
y
x
x
= − −
Quyidagi chiziqlar bilan chegaralangan shaklning yuzini toping. Mos
rasm chizing (
Dostları ilə paylaş: |