92
93
Berilgan
f
(
x
)
funksiya uchun grafigi
A
(
x
;
y
) nuqtadan o‘tadigan
boshlang‘ich funksiyani toping
(29 – 30)
:
29.
1)
3
( )
cos
2
3
x
f x
= ⋅
,
A
(π; 4);
2)
3
( )
sin 5
5
f x
x
= ⋅
,
( ; 3);
2
A
π
3)
( ) 2sin 5
2cos
2
x
f x
x
=
+
,
( ; 0);
3
A
π
30.
1)
f
(
x
)=3
x
2
–2
x
+8,
A
(1; 9);
2)
3
2
( ) 4
3
2 1
f x
x
x
x
=
−
+
+
,
A
(–1; 4);
3)
4
2
( ) 5
3
2
f x
x
x
=
+
+
,
A
(–2; 1).
31.
Integralni toping:
1)
2
(
1)(
2) ;
x
x
dx
−
+
∫
2)
2
(
2)(
9) ;
x
x
dx
+
−
∫
3)
2
3
(
1)(
1) ;
x
x
dx
+
−
∫
4)
2
1 4
1 2
;
1 2
x
xdx
x
−
+
−
−
∫
dx
;
5)
2
9
4
3 2 .
3
2
x
x
dx
x
− −
+
+
∫
dx
;
6)
5 2
(
2 ) ;
x
x
e
dx
−
−
∫
7)
3 2
(
10 ) .
x
x
e
dx
+
+
∫
32.
Integralni hisoblang:
1)
2
;
6 10
x
dx
x
+
+
∫
6
x
2)
2
;
4
5
dx
x
x
−
+
∫
3)
2
.
10
26
dx
x
x
+
+
∫
N a m u n a :
2
4
5
dx
I
x
x
=
+
+
∫
integralni hisoblang.
2
2
;
4
5
1 (
2)
dx
dx
I
x
x
x
∆ =
=
+
+
+ +
∫
∫
x
+2 =
u
deyilsa, 1+(
x
+2)
2
=1+
u
2
x
′=
u
′ va integrallar jadvalining
14–15 bandlariga ko‘ra
2
arctg
arctg(
2)
.
1
du
I
u C
x
C
u
=
=
+ =
+ +
+
∫
Tekshirish:
( a r c t g (
x
+ 2 ) +
C
) ′ = ( a r c t g (
x
+ 2 ) )
′
+
C
′
=
2
2
2
1
1
1
(arc (
2)
) (arc (
2))
0
.
1 (
2)
1 (
2)
4
5
tg x
C
tg x
C
x
x
x
x
′
′
′
+ +
=
+
+
=
+ =
=
+ +
+ +
+
+
2
2
2
1
1
1
(arc (
2)
) (arc (
2))
0
.
1 (
2)
1 (
2)
4
5
tg x
C
tg x
C
x
x
x
x
′
′
′
+ +
=
+
+
=
+ =
=
+ +
+ +
+
+
Javob:
arctg(
x
+2)+
C
.
▲
94
95
Integrallash
qoidalaridan yana biri
bo‘laklab
integrallashdir
.
3-qoida*.
Agar biror
X
oraliqda
f
(
x
) va
g
(
x
) funksiyalar uzluksiz
f
(
x
)
va
g
'(
x
) hosilaga ega bo‘lsa,
u holda
( ) '( )
( ) ( )
( ) '( )
f x g x dx f x g x
g x f x dx
=
−
∫
∫
(1)
formula o‘rinlidir. Bu formula
bo‘laklab integrallash formulasi
deyiladi.
Bu
formulaning isboti
f
(
x
) va
g
(
x
) funksiyalar ko‘paytmasini differen-
siallash qoidasi (
f
(
x
)
g
(
x
))
=f
(
x
)
g
(
x
)
+f
(
x
)
g
(
x
) va
( )
( )
df x
f x C
=
+
∫
f
(
x
)
dx
=
f
(
x
)+
C
ekani dan
kelib chiqadi.
Formuladan
foydalanish yo‘rig‘i
: 1) integral ostidagi ifoda
f
(
x
) va
g
(
x
) lar ko‘paytmasi ko‘rinishida yozib olinadi; 2)
g
(
x
) va
g
(
x
)
f
(
x
)
ifodalarning integrallarini oson (qulay) hisoblanadigan qilib olish
nazarda
tutiladi.
1-misol.
x
x e dx
⋅
∫
integralni hisoblang.
Bu yerda
f
(
x
)
=x, g
(
x
)
=e
x
deb olish qulay,
chunki
( )
'( )
x
x
g x
g x dx
e dx e
= ∫
= ∫
=
, f
(
x
)=1.
U holda (1) ga asosan,
.
x
x
x
x
x
xe dx x e
e dx x e e C
= ⋅ −
= ⋅ − +
∫
∫
Demak,
( 1)
.
x
x
xe dx e x
C
= ⋅ − +
∫
Javob:
e
x
(
x
–1)
+C
.
▲
2-misol.
ln
xdx
∫
integralni hisoblang.
∆
Integral ostidagi ln
x
funksiyani
f
(
x
)
=
ln
x
va
g
(
x
)
=
1
larning
ko‘paytmasi deb hisoblaymiz: ln
x=f
(
x
)
·
g
(
x
)
.
U
holda
f
1
( )
,
dg x
x
=
( )
1
.
g x
dx x C
=
⋅
= +
∫
(1) formulaga ko‘ra,
1
ln
ln
ln
ln
(ln
1)
(ln
ln )
ln
.
xdx x x
x dx x x
dx x x x C
x
x
x
x
C x
x
e C x
C
e
=
−
⋅
=
−
=
− + =
=
− + = ⋅
−
+ = ⋅
+
∫
∫
∫
94
95
Demak,
ln
ln
.
x
xdx x
C
e
= ⋅
+
∫
Tekshirish:
( ln
) ( ln )
ln
(ln ) 0
1
ln
ln
1
1 1
.
x
x
x
x
x
C
x
C
x
x
e
e
e
e
x
e
x
lux
e
lux
lux
e
x e
′
′
′
′
′
+
=
+
= ⋅
+
+ =
=
+ ⋅ ⋅ =
−
+ =
− + =
1
ln
· ·
x
e
x
e
x e
=
+
⋅
1
ln
· ·
x
e
x
e
x e
=
+
⋅
1
ln
· ·
x
e
x
e
x e
=
+
=ln
x
– l n
e
+ 1 = l n
x
– 1 + 1 = l n
x .
Javob:
ln
.
x
x
C
e
⋅
+
∆
▲
3-misol.
cos
x
xdx
∫
integralni hisoblang.
Integralni hisoblash uchun
f
(
x
)
=x, g
′
(
x
)
=
cos
x
deyish qulay. U
holda
f
′
( )
,
df x
dx
=
1,
( )
cos
sin
g x
xdx
x
=
=
∫
(bu yerda boshlang‘ich funksiya -
lardan bittasini ol dik, shuning uchun o‘zgarmas son
C
ni yozma dik).
Bo‘laklab integrallash
formulasiga muvofiq,
cos
x
xdx
∫
cos
sin
sin
sin
cos
.
x
xdx x
x
xdx x
x
x C
= ⋅
−
=
+
+
∫
Javob: x
sin
x+
cos
x+C
.
▲
Integrallarni hisoblang (
Dostları ilə paylaş: