14
15
12.
Quyidagi funksiyalardan qaysi biri
x
→
3 da limitga ega? Shu limitni
toping.
16
17
5–6
HOSILA, UNING GEOMETRIK
VA FIZIK MA’NOSI
12-rasmda egri chiziq, kesuvchi va urinma tasvirlangan.
12-rasm. 13-rasm.
B
nuqta
B
1
,
B
2
, ... holatlarni ketma-ket qabul qilib,
A
nuqtaga
egri
chiziq
bo‘ylab
yaqinlashsa (13-rasm), mos kesuvchilarning egri chiziqqa
A
nuqtada o‘tkazilgan urinma holatini olishga intilishini
intuitiv tarzda
qabul qilamiz.
Bu holda, ravshanki,
AB
to‘g‘ri chiziqning burchak koeffitsiyenti
urinmaning burchak koeffitsiyentiga yaqinlashadi.
1-misol.
f
(
x
)
= x
2
funksiyaning grafigiga
A
(1; 1) nuqtada urinadigan
to‘g‘ri chiziqning burchak koeffitsiyentini toping (14-rasm).
14-rasm. 15-rasm.
B
(
x; x
2
)
16
17
f
(
x
)
= x
2
funksiyaning grafigiga tegishli ixtiyoriy
B
(
x, x
2
) nuqtani
qaraylik (15-rasm).
AB
to‘g‘ri chiziqning burchak koeffitsiyenti
( )
(1)
1
f x
f
x
−
−
yoki
2
1
1
x
x
−
−
ga teng.
B
nuqta
A
nuqtaga egri chiziq bo‘ylab yaqinlashganda,
x
ning qiymati
1 ga yaqinlashadi, bunda
x
≠ 1.
Demak,
AB
to‘g‘ri chiziqning burchak koeffitsiyenti urinmaning
burchak koeffitsiyenti
k
ga yaqinlashadi, ya’ni:
2
1
1
1
(
1)(
1)
1
lim
lim
lim (
1) 2
1
1
x
x
x
x
x
x
k
x
x
x
→
→
→
+
−
−
=
=
=
+ =
−
−
.
Shunday qilib,
k
= 2.
▲
y = f
(
x
) funksiya berilgan bo‘lsin. Uning grafigiga tegishli bo‘lgan
A
(
x
;
f
(
x
)) va
B
(
x+h
;
f
(
x+h
)) nuqtalarni qaraylik (16-rasm).
AB
to‘g‘ri chiziqning burchak koeffitsiyenti
(
)
( )
(
)
( )
f x h
f x
f x h
f x
x h x
h
+
−
+
−
=
+ −
ayirmali nisbatga teng.
B
nuqta
A
nuqtaga egri chiziq bo‘ylab yaqinlashganda
h
→
0, ya’ni
h
orttirma nolga intiladi,
AB
kesuvchi esa funksiya grafigiga
A
nuqtada
o‘tkazilgan urinmaga intiladi.
Shu bilan birga,
AB
to‘g‘ri chiziqning burchak koeffitsiyenti urinmaning
burchak koeffitsiyentiga yaqinlashadi.
Boshqacha aytganda,
h
ning qiymati 0 ga intilganda ixtiyoriy (
x
;
f
(
x
))
nuqtada o‘tkazilgan urinmaning burchak koeffitsiyenti
(
)
( )
f x h
f x
h
+
−
ayirmali nisbatning limit qiymatiga, ya’ni
0
(
)
( )
lim
h
f x h
f x
h
→
+
−
qiymatga teng
bo‘ladi.
18
19
16-rasm. 17-rasm.
x
ning mazkur limit mavjud bo‘lgan ixtiyoriy qiymatiga funksiya
grafigiga (
x, f
(
x
)) nuqtada o‘tkazilgan urinmaning burchak koeffitsiyentining
yagona qiymatini mos qo‘yish mumkin (17-rasm).
Demak,
0
(
)
( )
lim
h
f x h
f x
h
→
+
−
formula yangi funksiyani ifodalaydi.
Mana shu funksiya
y=f
(
x
) funksiyaning
hosilaviy
funksiyasi
, yoki
sodda qilib
hosilasi
deb ataladi.
Ta’rif.
y=f
(
x
) funksiyaning
hosilasi
deb quyidagi limitga (agar u
mavjud bo‘lsa) aytiladi:
0
(
)
( )
lim
h
f x h
f x
h
→
+
−
. (1)
Odatda
y=f
(
x
) funksiyaning hosilasi
f
ʹ(
x
) kabi belgilanadi.
Hosilani topish amali
differensiallash
deyiladi.
f
ʹ(
x
) belgilash o‘rniga
dy
dx
kabi belgilash ham qabul qilingan.
Bu belgilashning “kasr” ko‘rinishda ekanligini quyidagicha tushuntirish
mumkin.
Agar orttirmalarni
h
=
Δ
x
,
f
(
x
+Δ
x
) –
f
(
x
)=Δ
y
deb belgilasak,
f
0
(
)
( )
( ) lim
h
f x h
f x
f x
h
→
+
−
′
=
dan quyidagiga ega bo‘lamiz (18-
rasm):
f
0
( ) lim
x
y dy
f x
x dx
∆ →
∆
′
=
=
∆
.
18
19
18-rasm.
Yuqoridagi mulohazalardan shunday xulosaga kelamiz:
y
=
f
(
x
) funksiya
hosilasining
x
0
nuqtadagi qiymati funksiya grafigiga shu nuqtada o‘tkazilgan
urinmaning burchak koeffitsiyentiga teng. Hosilaning
geometrik ma’nosi
shundan iboratdir.
2-misol.
Moddiy nuqta
s
=
s
(
t
) (
s
– metrlarda,
t
– sekundlarda o‘lchanadi)
qonunga muvofiq to‘g‘ri chiziq bo‘ylab harakat qilmoqda. Shu moddiy
nuqtaning vaqtning
t
momentidagi (paytidagi) tezligi
v
(
t
) ni toping.
Ma’lumki, oniy tezlik nuqtaning kichik vaqt oralig‘i
Δ
t
dagi o‘rtacha
tezligi
v t
s t
t s t
t
( )
(
)
( )
ga taqriban teng.
Δ
t
nolga intilganda oniy tezlik va
o‘rtacha tezlik orasidagi farq ham nolga intiladi. Demak, moddiy nuqtaning
t
momentdagi oniy tezligi
v t
s t
t s t
t
s
t
s t
t
t
( ) lim (
)
( ) lim
'( ).
0
0
▲
Shunday qilib,
t
momentdagi oniy tezlik nuqtaning harakat qonuni
s
(
t
) funksiyadan olingan hosilaga teng ekan.
Hosilaning
fizik ma’nosi
ana shundan iborat. Umuman aytganda,
hosila funksiyaning o‘zgarish tezligidir.
20
21
Misollar
Hosila ta’rifidan foydalanib, funksiyalarning hosilasini toping:
1.
f
(
x
)=
x
2
;
2.
f
(
x
)=5;
3.
f
(
x
)=
x
3
–7
x
+5;
4.
f
(
x
)=
x
4
;
5.
1
( )
f x
x
=
;
6.
( )
f x
x
=
;
7.
f x
x
( )
=
3
.
1.
h
≠0 bo‘lgani uchun
2
2
0
0
(
)
( )
(
)
'( ) lim
lim
h
h
f x h
f x
x h
x
f x
h
h
→
→
+ −
+
+
=
=
=
2
0
lim
h
x
→
=
2
2
2
xh h
x
+
+
−
0
lim
h
h
h
→
=
(2
)
x h
h
+
0
lim(2
) 2
h
x h
x
→
=
+
=
.
2.
h
≠ 0 bo‘lgani uchun
f
(
x+h
)=5,
f
(
x+h
)–
f
(
x
)=5 – 5=0,
(
)
( ) 0 0
f x h
f x
h
h
+
−
= =
Demak,
0
(
)
( )
( ) lim
0
h
f x h
f x
f x
h
→
+
−
′
=
=
.
3.
h
≠0 bo‘lgani uchun
f
(
x+h
)=(
x+h
)
3
– 7 (
x + h
) + 5 =
x
3
+ 3
x
2
h
+ 3
xh
2
+
h
3
– 7
x
– 7
h
+ 5;
f
(
x+h
) –
f
(
x
)=
x
3
+ 3
x
2
h
+ 3
xh
2
+
h
3
– 7
x
– 7
h
+ 5 –
x
3
+ 7
x
– 5 =
=3
x
2
h
+3
xh
2
+
h
3
– 7
h
.
2
2
3
(
)
( ) 3
3
7
f x h
f x
x h
xh
h
h
h
h
+
−
+
+
−
=
=
3
x
2
+3
xh
+
h
2
– 7.
h
→
0 da 3
xh
+
h
2
→
0 bo‘lgani uchun
2
0
(
)
( )
( ) lim
3
7
h
f x h
f x
f x
x h
h
→
+
−
′
=
=
−
3
x
2
–7.
4.
Qisqa ko‘paytirish formulalariga ko‘ra
a
4
–
b
4
=(
a – b
)(
a + b
)(
a
2
+
b
2
).
Demak, (
x+h
)
4
–
x
4
=(
x+h–x
)(
x+h+x
)((
x+h
)
2
+
x
2
)=
=
h
(2
x+h
)(2
x
2
+2
xh+h
2
)=2
hx
(2
x+h
)(
x+h
)+
h
3
(2
x+h
)=
=2
hx
(2
x
2
+
h
(3
x+h
))+
h
3
(2
x+h
);
h
→
0 bo‘lsa,
2
h
2
x
(3
x+h
)
→
0 va
h
3
(2
x+h
)
→
0
bo‘lgani uchun
4
4
3
0
0
(
)
lim
lim(4
2 (3
))
h
h
x h
x
x
hx x h
h
→
→
+
−
=
+
+
+
h
2
(2
x
+
h
))=4
x
3
.
Demak,
f
ʹ(
x
)=(
x
4
)ʹ=4
x
3
.
5.
1
( )
f x
x
=
,
x
≠ 0 bo‘lsin,
20
21
(
)
1
1
(
)
( )
,
(
)
(
)
x
x h
h
f x h
f x
x h x
x h x
x h x
−
+
+
−
=
− =
= −
+
+
+
(
)
( )
1
.
(
)
f x h
f x
h
x h x
+
−
=
+
–
h
→
0 da
x+h
→
x
bo‘lgani uchun
2
1
( )
f x
x
′
= −
bo‘ladi.
6.
( )
,
0,
0
f x
x x
x h
=
>
+ >
bo‘lsin,
(
)
( )
f x h
f x
x h
x
h
h
+
−
+ −
=
ayirmali nisbatni tuzamiz va uni soddalashtiramiz:
(
)(
)
(
)
(
)
( )
x h
x
x h
x
f x h
f x
h
h x h
x
+ −
+ +
+
−
=
=
+ +
(
) (
)
(
)
1
.
x h
x
h
x h
x
h x h
x
h x h
x
+
−
=
=
=
+ +
+ +
+ +
h
→
0 da
x h
x
+ →
bo‘lgani uchun
1
( )
2
f x
x
′
=
bo‘ladi.
7.
Ayirmali nisbatni tuzamiz:
(
)
( )
(
)
(
)
(
)
(
)
(
)
2
2
3
3
3
3
3
3
3
2
2
3
3
3
(
)
(
)
+ −
+
+
+
+
+
−
+ −
=
=
=
+
+
+
+
x h
x
x h
x h x
x
f x h
f x
x h
x
h
h
h
x h
x h x
x
(
)
(
)
(
)
(
)
(
)
(
)
3
2
2
2
2
2
2
3
3
3
3
3
3
3
3
1
.
(
)
(
)
+ −
=
=
=
+
+
+
+
+
+
+
+
+
+
+
+
x h x
h
h
x h
x h x
x
h
x h
x h x
x
x h
x h x
x
(
)
(
)
(
)
(
)
(
)
(
)
3
2
2
2
2
2
2
3
3
3
3
3
3
3
3
1
.
(
)
(
)
+ −
=
=
=
+
+
+
+
+
+
+
+
+
+
+
+
x h x
h
h
x h
x h x
x
h
x h
x h x
x
x h
x h x
x
h→
0
da
(
)
(
)
3
3
2
2
2
3
3
1
1 .
3
→
+
+
+
+
x
x h
x h x
x
Demak,
x
x
3
2
3
1
3
.
Javob:
Dostları ilə paylaş: |