Kesmani berilgan nisbatda bo’lish. To’g’ri burchakli dekart koordinatalari sistemasida A(x1,y1) va B(x2,y2) ikki nuqta berilgan bo’lsin. Berilgan nuqtalar orqali to’g’ri chiziq o’tkazib, unda musbat yo’nalishni aniqlasak, bu to’g’ri chiziq o’qqa aylanadi. Bu o’q koordinata o’qlariga parallel emas deb olaylik. Olingan o’qda A va B nuqtalar yo’nalgan kesmani aniqlaydi. Faraz qilaylik, М (х, у) В nuqtadan farqli bo’lgan (aytilgan o’qdagi) nuqta bo’lsin. kesmani λ =AМ : МВ nisbatda bo’luvchi M nuqtaning koordinatasini topish talab etiladi.
A, M va B nuqtalarni koordinata o’qlariga proyeksiyalaymiz: Ular Ax, Mx,Bx, Ay, My, By lardan iborat bo’ladi.
Ax Mx Bx
Mx nuqta yo’nalgan kesmani λ nisbatda bo’ladi, yani
tenglikdan
ekanligini topamiz.
Xuddi shu yo’l bilan ni topamiz.
Bu yerda x, y berilgan kesmani λ nisbatda bo’luvchi M (x; y) nuqtaning koordinatalari bo’ladi.
Agar M (x; y) nuqta yo’nalgan kesmaning o’rtasida bo’lsa λ =1 bo’lib yuqoridagi formulalar quyidagi
ko’rinishni oladi:
Dostları ilə paylaş: |