Birinchi tartibli differensial tenglamalarning maxsus yechimi. Klero tenglamasi. Langranj tenglamasi



Yüklə 327,43 Kb.
səhifə1/4
tarix12.05.2023
ölçüsü327,43 Kb.
#112299
  1   2   3   4
BIRINCHI TARTIBLI DIFFERENSIAL TENGLAMALAR

Andijon mashinasozlik instituti Mashinasozlik texnologiyasi fakulteti MTMICHJA yo’nalishi K 10-22 guruh talabasi Arabjonov Xoldarbekning

Andijon mashinasozlik instituti Mashinasozlik texnologiyasi fakulteti MTMICHJA yo’nalishi K 10-22 guruh talabasi Arabjonov Xoldarbekning

Oliy matematika fanidan

MUSTAQIL ISHI

BIRINCHI TARTIBLI DIFFERENSIAL TENGLAMALAR

Matematika va uning tatbiqlarining muhim masalalari x ni emas, balki uning biror noma`lum y(x) funksiyasini topish masalasi qo`yilgan va tarkibida x, y(x), shu bilan birga uning y′(x), y"(x),...,y(n)(x) hosilalarini o`z ichiga olgan murakkab tenglamalarni yechishga keltiriladi. Masalan, y′ + 2y - x3 = 0, y" = с·ax, у′" + у = 0.

  • Matematika va uning tatbiqlarining muhim masalalari x ni emas, balki uning biror noma`lum y(x) funksiyasini topish masalasi qo`yilgan va tarkibida x, y(x), shu bilan birga uning y′(x), y"(x),...,y(n)(x) hosilalarini o`z ichiga olgan murakkab tenglamalarni yechishga keltiriladi. Masalan, y′ + 2y - x3 = 0, y" = с·ax, у′" + у = 0.
  • Erkli o`zgaruvchi x ni, noma`lum y(x) funksiyani va uning n tartibli hosilasiga qadar hosilalarini bog`lovchi tenglamaga n-tartibli oddiy diffcrcnsial tcnglama deyiladi. Yuqoridayozilgan tenglamalar, mos ravishda, birinchi, ikkinchi va uchinchi tartibli differensial tenglamalardir. Umumiy ko`rinishda n-tartibli differensial tenglama F(x, y, y′, y",..., yn) = 0 (1) shaklda yoziladi.

(1) tenglamani ayniyatga aylantiruvchi va kamida n marta differensial-lanuvchi har qanday у = f(x) funksiyaga differensial tenglama yechimi deyiladi.

  • (1) tenglamani ayniyatga aylantiruvchi va kamida n marta differensial-lanuvchi har qanday у = f(x) funksiyaga differensial tenglama yechimi deyiladi.
  • Masalan, у = e-x funksiya y′ + у = 0 differensial tenglama yechimi bo`lib, tenglamaning cheksiz ko`p yechimlaridan biridir. Har qanday у = c·e-x funksiya ham, bu yerda, с - ixtiyoriy o`zgarmas, tenglamani qanoatlantiradi. Ushbu differensial tenglama yechilganda, uning yechimi у = с·e-x ko`rinishdan o`zgacha bo`lishi mumkin emasligini aniqlaymiz. Shu ma`noda, у = с·e-x funksiya uning umumiy yechimi deyiladi. Umumiy yechimda ixtiyoriy o`zgarmas с qatnashgani uchun, tenglama yechimlari to`plami yagona ixtiyoriy с o`zgarmasga bog`liq deyiladi.

Yüklə 327,43 Kb.

Dostları ilə paylaş:
  1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin