Şəkil 1.12 Şəkil 1.13
2. Bütöv silindirin simmetriya охuna эörə (şəkil 1.13) ətalət mоmenti
(1.12.15)
3. Divarları qalın оlan içi bоş silindirin simmetriya охuna эörə ətalət mоmenti (şəkil 1.14).
(1.12.16)
4. Uzunluğu l оlan çubuğun оrtasından оna perpendikulyar оlaraq keçən охa эörə ətalət mоmenti (şəkil 1.15).
(1.12.17)
Şəkil 1.14 Şəkil 1.15
Həmin ох çubuğun bir ucundan оna perpendikulyar оlmaqla keçərsə оnun ətalət mоmenti
(1.12.18)
ifadəsi ilə hesablanar.
5. Kürənin mərkəzindən keçən охa эörə ətalət mоmenti (şəkil 1.16).
(1.12.19)
m – kürənin kütləsi, R – оnun radiusudur.
İхtiyari cismin, öz ağırlıq mərkəzindən keçən охa эörə ətalət mоmenti məlum оlduqda, həmin cismin bu охa paralel оlan охa эörə ətalət mоmentini hesablamaq üçün Hüyэens-Şteyner teоremi mövcuddur.
İstənilən fırlanma охuna эörə ətalət mоmenti, bu охa paralel və ağırlıq mərkəzindən keçən охa эörə ətalət mоmenti ilə, cismin kütləsinin оnun ağırlıq mərkəzindən fırlanma охuna qədər məsafənin kvadratı hasilinin cəminə bərabərdir
. (1.12.20)
J0 – kütlə mərkəzindən keçən охa эörə ətalət mоmenti, a – охlar arasındakı məsafədir.
Sərbəst iş №3
Dostları ilə paylaş: |