AMEA Botanika Ġnstitutunun elmi əsərləri, 2015-ci il, XXXV cild
165
də yarpaqlarda sintez olunduğu sübut olunmuşdur [4, 16], hərçəndki onların funksional lokalizasiyası
hələ məlum deyil. Amma məlumdur ki, ABA genlərində quraqlığın təsiri ilə artan tənzimləmə baş
verir [3]. Tədqiq etdiyimiz hər iki ailə nümayəndələri SlERF5 və
SlWRKY33 faktorların ABA
sistemi ilə əlaqəsi şübhəsiz onların ABA sintez edən genlərin tənzimlənməsindəki danılmaz rolu
ilədır.
ƏDƏBĠYYAT
1.
Гасымов К.Г. и Наджафова Л.А. Ген SIWRKY33 способствует толерант-ности растений
томата к солевому и водному стрессам. Физиология Растений и Генетика, 2014. Т. 46. №5
ст. 385-394.
2.
Aoki K, Yano K, Suzuki A, Kawamura S, et al., Large-scale analysis of full-length cDNAs from
the tomato (Solanum lycopersicum) cultivar. Reference system for the Solanaceae genomics.
BMC Genomics, 2010, V. 11, 210 (http://www.biomedcentral.com/1471-2164/11/210)
3.
Assmann, S. M., Snyder, J. A. and Lee, Y.-R. J. ABA-deficient (aba1) and ABA-insensitive
(abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal reponse to humidity. Plant
CellEnviron. 2000, V. 23, pp. 387-395.
4.
Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y.,
Yamaguchi-Shinozaki, K. and Shinozaki, K. Regulation of drought tolerance by gene
manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in absciisc acid biosynthesis
in Arabidopsis. Plant J., 2001, V. 27, pp.325-333.
5.
Jofuku K.D., Den Boer B.G., Van Montagu M., Okamuro J.K. Control of Arabidopsis flower and
seed development by the homeotic gene APETALA2. Plant Cell.,1994, V. 6 (9), 1211-1225.
6.
Koiwai, H., Nakaminami, K., Seo, M., Mitsuhasi, W., Toyomasu, T. and Koshiba, T.
Tissuespecific localization of an abscisic acid bioxynthesis enzyme, AAO3, in Arabidopsis. Plant
Physiol., 2004, V. 134, pp. 1697-1707.
7.
Li H., Gao Y., Xu H., Dai Y., Deng D., Chen J. ZmWRKY33, a WRKY maize transcription factor
conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul., 2013, V. 70, pp.
207–216
8.
Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R, ETHYLENE RESPONSE FACTOR1
integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 2003, V.
15, pp. 165–178
9.
Martínez-García J.F., Monte E, Quail P.H. A simple, rapid and quantitative method for preparing
Arabidopsis protein extracts for immunoblot analysis. Plant J., 1999, V. 20 (2), pp. 251-257.
10.
Ohme-Takagi M. and H. Shinshi, Ethylene-inducible DNA binding proteins that interact with an
ethylene-responsive element. Plant Cell., 1995, V. 7 (2), pp. 173-182.
11.
Okamuro J.K., B. Caster, R. Villarroel, M. Van Montagu, K.D. Jofuku, The AP2 domain of
APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. P. N. A. S.
USA., 1997, V. 94, pp. 7076-7081.
12.
Pan Y, Seymour GB, Lu C, Hu Z, Chen X and Chen G. An ethylene response factor (ERF5)
promoting adaptation to drought and salt tolerance in tomato. Plant Cell, Rep. 2012, V.31 (2),
pp.349-360
13.
Pandey, S.P. and Somssich, I.E. The role of WRKY transcription factors in plant immunity.
Plant Physiol. 2009, V.150, pp. 1648–1655
14.
Rushton P.J., Somssich I.E., Ringler P. Shen Q.J. WRKY transcription factors. Trends in Plant
Science, 2010, V. 15 No.5, pp. 247-258
15.
Abdelaty SALEH and Montserrat PAGÉS Plant AP2/ERF transcription factors. GENETIKA
(Spain), 2003, V. 35, No. 1, pp. 37-50,.
16.
Tan, B. C., Joseph, L. M., Deng, W. T., Liu, L., Li, Q. B., Cline, K. and MaCarty, D. R.
Molecular characterization of the Arabodopsis 9-cis expoxycarotenoid dioxygenase gene family.
Plant J., 2003, V. 35, pp. 44-56.
17.
Vernie T., Moreau S., de-Billy F., Plet J., Combier J-P., Rogers C., Oldroyd, G., Frugier F.,
|