Kirish har nechuk ilmdan eshitsang bir so‘z, Uni tinmay o‘rgan kecha-yu, kunduz Abulqosim Firdavsiy. Kurs ishining dolzarbligi


ning limiti mavjud emasligini ko’rsating. Y e c h i s h



Yüklə 0,81 Mb.
səhifə10/11
tarix10.11.2022
ölçüsü0,81 Mb.
#68473
1   2   3   4   5   6   7   8   9   10   11
funksiya.ber.lim

3. ning limiti mavjud emasligini ko’rsating.
Y e c h i s h. Ikki ketma – ketlik va lar .
Funksiya qiymatlaridan iborat ketma – ketliklar quyidagicha:
va
bo’lib, va , ya’ni va ketma – ketliklar har хil limitlarga ega bo’lgani uchun da funksiyaning limiti mavjud emasligini ko’rsatadi.
4. funksiyaning dagi bir tomonlama limitlarini toping.

Y e c h i s h. bo’lsa, bo’lib, – chap limit.
A gar x >1 bo’lsa, bo’lib, – o’ng limit (14-shakl)


x

14 – s h a k l.
2.2.Chekli limitga ega bo’lgan funksiyalarning хossalari.
Chekli limitga ega bo’lgan funksiyalar qator хossalarga ega bo’lib, bu хossalarni o’rganishda asosan funksiya limiti ta’riflaridan foydalaniladi.
funksiya X to’plamda berilgan, a esa Х ning limit nuqtasi bo’lsin.
10. Agar funksiyaning a nuqtada limiti mavjud bo’lsa, bu limit yagonadir.
20. Agar bo’lib, b>p (ba ning yetarli kichik atrofidan olingan ning qiymatlarida bo’ladi.
30. Agar bo’lsa, u holda a ning yetarlicha kichik atrofidan olingan ning qiymatlarida funksiya chegaralangan bo’ladi.
40. Agar , bo’lib, х argumentning tengsizlikni qanoatlantiruvchi barcha qiymatlarida tengsizlik o’rinli bo’lsa, u holda tengsizlik o’rinli bo’ladi.
50. Agar х argumentning tengsizlikni qanoatlantiruvchi barcha qiymatlarida tengsizlik o’rinli bo’lib, bo’lsa, u holda – mavjud va u ham b ga teng.
60. Agar , bo’lsa, u holda , , funksiyalar ham limitga ega va , , munosabatlar o’rinli.
70. Agar mavjud bo’lsa, u holda ham majud va u ga teng (k-const), ya’ni .
80. Agar mavjud va chekli bo’lsa, u holda ham mavjud (mЄN) va munosabat o’rinli bo’ladi.
Faraz qilaylik to’plamda funksiya aniqlangan va bu funksiya qiymatlaridan iborat to’plamda funksiya aniqlangan bo’lib, ular yordamida murakkab funksiya hosil qilingan bo’lsin.
90. Agar 1) bo’lib, a nuqtaning shunday (a – , a + ) atrofi mavjud bo’lsaki, bu atrofdan olingan barcha х lar uchun bo’lsa, 2) c nuqta T to’plamning limit nuqtasi bo’lib, bo’lsa, u holda da murakkab funksiya limitga ega va bo’ladi.
M i s o l l a r.
1. limitni ko’phadning limitini topish qoidasiga ko’ra hisoblanadi.


2. limitning maхraji х = 2 da noldan farqli bo’lgani uchun kasr– rasional funksiyaning limitini hisoblash qoidasiga ko’ra topamiz:

3. limitda bo’luvchining limiti nolga teng:
. Demak, bo’linmaning limiti haqidagi xossani qo’llab bo’lmaydi, chunki 4х – 8 ifoda da cheksiz kichik miqdordir, unga teskari miqdor esa cheksiz katta miqdordir. Shuning uchun da ko’paytma cheksiz katta miqdor, ya’ni .
4. ifoda da ikkita cheksiz katta miqdorning ayirmasidan iboratdir. Kasrlarni ayirib, surat va maхraji da nolga intiladigan kasrni hosil qilamiz. Kasrni ga qisqartirib, quyidagiga ega bo’lamiz:



5. limitni hisoblash uchun kasrning surat va maхrajini argumentning eng yuqori darajasiga, ya’ni bo’lamiz.

XULOSA
Kurs ishi uzluksiz ta’lim tizimining barcha bosqichlarida matematika fanini o’qitishda muhim ahamyatga ega bol’gan funksiya va uning grafigini o’rganish,o`rgatish masalasiga bag’ishlangan.
Kurs ishi kirish, asosiy qism, xulosa va foydalanilgan adabiyotlar iborat. Kirish qismida yurtimizda ta`lim sohasida olib borilayotgan islohotlar,ularning samarali natijasi va mavzu bo`yicha boshlang`ich ma`lumotlar berildi.
Asosiy qismda funksiya ta`rifi, uning kelib chiqishi,funksiyaning berilish usullari, aniqlanish soxasi, turli elementar funksiyalar va ularning grafiklari, funksiyaning asosiy xossalari, davriy va teskari funksiyalar, ular orasidagi bog’lanish, chiziqliqli funksiya, kvadratik funksiya, logorifimik funksiya, trigonometrik funksiya, teskari trigonometrik funksiyalar,funksiya va uning grafini pedagogic texnalogiyalar orqali o`qitish haqidagi to’liq ma’lumotlar keltirildi.Har bir keltirilgan misollar grafiklari bilan boyitildi,zero,mavzu ham aynan grafikka bog`liq.
Ko’rilgan masalalar yuzasidan xususiy metodik tafsiyalar olish mumkin:

  1. Funksiya grafigini o’qitilishi, talimda ko’rgazmalilik tamoilini amalgam oshirishda yordam beradi.

  2. O’quvchilar qiziqishini ortirishda muhum ro’l o’ynaydi.

  3. Matematika ta’limda maqsadni aniq belgilash va kafolatlangan natijaga intilish xususiyatini taminlaydi.

Xulosa qiladigan bo`lsam,matematikaning har bir bo`limiga o`tganimizda unda yangidan yangi,qiziqarli ma`lumotlarga duch kelamiz,ularni o`quvchilarga yanada qiziqarli va tushunarli qilib yetkazib berish o`qituvchining mahoratiga bog`liq.Mavzuni hayotga bog`lab tushuntirib berish,undagi o`ziga xos xususiyatlarni o`quvchiga yetkazib berish murakkab jarayon.O`qituvchi hamisha ishiga puxta va har qanday savollarga tayyor bo`lishi lozim.
Malakasini,tajribasini muntazam oshirib borishi kerak.O`qituvchining zamon bilan ham nafas bo`lishi ham bugungi kun talabi.
Shunday ekan biz bo`lajak pedagoglar o`qituvchilik sharafliligi bilan bir qatorda ma`suliyatli kasb ekanligini unutmagan holda,vaqtimiz,imkonimiz borida o`qib o`rganib olishimiz kerak.

Yüklə 0,81 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin