Kirish har nechuk ilmdan eshitsang bir so‘z, Uni tinmay o‘rgan kecha-yu, kunduz Abulqosim Firdavsiy. Kurs ishining dolzarbligi


O‘zgaruvchilar orasidagi funksional bog‘lanish. Funksiya tushunchasini ta’rifi, funksiyaning aniqlanish va о‘zgarish sohasi



Yüklə 0,81 Mb.
səhifə4/11
tarix10.11.2022
ölçüsü0,81 Mb.
#68473
1   2   3   4   5   6   7   8   9   10   11
funksiya.ber.lim

1.2.O‘zgaruvchilar orasidagi funksional bog‘lanish. Funksiya tushunchasini ta’rifi, funksiyaning aniqlanish va о‘zgarish sohasi

Fan va turmushning turli sohalarida, matematikaning о‘zida, fizikada, texnikada birgalikda о‘zaro bir-biriga bog‘liq ravishda о‘zgaruvchi miqdorlar kо‘p uchraydi.funksiya tushunchasi matematikaning asosiy tushunchalaridan biri bо‘lib, u ikkita (umumiy holda bir necha) о‘zgaruvchi miqdor orasidagi bog‘lanishdan kelib chiqadi. О‘zgaruvchi miqdorlarni ikkiga ajratish mumkin, biri ixtiyoriy о‘zgaruvchi bо‘lib – u erkli о‘zgaruvchi yoki argument, ikkinchisi esa birinchisiga bog‘liq holda о‘zgarib – erksiz (unga bog‘liq bо‘lgan о‘zgaruvchi) yoki funksiya deyiladi.


Bularga misollar keltiramiz
1) Doiraning S yuzi R radiusining funksiyasidir: formula yordamida R radiusining ixtiyoriy berilgan qiymati bо‘yicha doiraning S yuzini hisoblash mumkin.
2) Og‘ir moddiy nuqtaning erkin tushushidagi (qarshilik bо‘lmaganda) harakat boshlanishidan hisoblangan vaqt va shu vaqt ichida bosib о‘tilgan yо‘l formula bilan bog‘langan, bu yerda og‘irlik kuchining tezlanishi bо‘lib, yо‘l vaqtning funksiyasidir.
Yuqoridagi misollarda argumentning har bir qiymatiga (biror qoida bо‘yicha) funksiyaning aniq bir qiymati tо‘g‘ri kelishi xarakterlidir.
Ta’rif: Agar ning о‘zgarishi sohasidagi har bir qiymatiga biror qonun yoki qoida (usul) bо‘yicha ning о‘zgarish sohasidagi aniq bir qiymati mos keltirilsa, u holda u о‘zgaruvchi ning sohasidagi funksiyasi deyiladi. Bu yerda sohaga funksiya aniqlanish (mavjudlik yoki borliq) sohasi, U sohaga esa funksiyaning о‘zgarish sohasi deyiladi va deb belgilashlar ham ishlatiladi.
Erksiz u о‘zgaruvchi argumentning funksiyasi degan sо‘z о‘rniga qisqacha quyidagiga yoziladi: (“Igrek barobar ef iks” deb о‘qiladi).
“Funksiya” tushunchasi uzoq va yetarli murakkab taraqqiyot yо‘lini bosib о‘tdi. “Funksiya” terminini birinchi marta 1692 yilda G.B.Leybnits ishlarida paydo bо‘ldi. Bu terminni Shvetsariyalik olim I.Bernulli 1698 y. G.Leybnitsga yozgan xatida hozirgi tushunishga yaqin ma’noda ishlatgan. Funksiyaning hozirgi kundagisi bilan deyarli mos keluvchi tavsifi XIX asr boshlaridagi matematika darsliklaridayoq uchraydi.
Shuningdek, funksiya uchun ushbu simvolik yozuvlar ham ishlatiladi:

yuqoridagi harflar ning ning qiymatiga mos keladigan qiymatlarini topish usulini xarakterlaydi.
yozuvi funksiyaning xususiy qiymatiga mos keladigan funksiyaning xususiy qiymatini bildiradi.
Masalan, agar bо‘lsa, u holda va hokazo bо‘ladi. Agar ning har bir qiymatiga ning aniq birgina qiymati mos kelsa, bir qiymatli funksiya deyiladi.
Masalan: va hokazo funksiyalar bir qiymatli funksiyalardir.
Agar ning har bir qiymatiga ning bir necha (ikki uch va hokazo) qiymati tо‘g‘ri kelsa, u holda ga kо‘p (ikki, uch va hokazo) qiymatli funksiya deyiladi. Masalan: kabi funksiyalar kо‘p qiymatli funksiyalardir.
tenglikdagi harfining va harflaridan farqi shundaki, о‘zgaruvchi miqdor emas, balki bilan orasidagi bog‘lanishni kо‘rsatuvchi qoida (qonun) dir. Xususiy holda harfi argumentning qiymatlariga funksiyaning mos qiymatlarini topish uchun bajariladigan amallarni va ularning tartibini kо‘rsatadi.
simvol funksiyaning xarakteristikasi deb ataladi. harfi matematik amallari va ularning bajarilishi tartibini kо‘rsatibgina qolmay, ning ning har bir qiymatiga tо‘g‘ri keladigan mos qiymatini har qanday (sо‘zlar, jadval, grafik va boshqa) yо‘llar bilan kо‘rsatishi mumkin.
Misollarga murojat etaylik.
1. Agar funksiya formula bilan berilsa, quyidagi ma’noni bildiradi: “ ning ma’lum, aniq qiymatiga kо‘ra ning qiymatini topish uchun ning qiymatini kvadratga kо‘tarish kerak”.
2. bо‘lsa, quyidagi ma’noni bildiradi: ning ma’lum qiymati bо‘yicha ning qiymatini topish uchun ning qiymatidan kvadrat ildiz chiqarish kerak”.
Tajribamizdan ma’lumki, kо‘pgina о‘quvchilar, oliy о‘quv yurtlariga kiruvchilar funksiya tushunchasini va undagi harfini mazmunini chuqur bilmaydilar, funksiyaning aniqlanish sohasini topishda ancha qiynaladilar, xususan argumentning qabul qilishi mumkin bо‘lgan qiymatlari deb yoki funksiyani aniq qiymatga ega qiladigan argumentning qiymatlari deb qanday qiymatlarni tushunasiz, degan savolga tо‘liq ijobiy javob olish qiyindir.
Funksiyaning aniqlanish sohasi tushunchasini ma’no, mazmunini yanada tо‘laroq ochish uchun ushbu ta’rifni berish maqsadga muvofiqdir: kо‘rinishdagi funksiyaning aniqlanish sohasi deb, bu funksiyani haqiqiy va chekli qiymatlarga ega qiladigan argumentning barcha haqiqiy qiymatlari tо‘plamiga aytiladi natijada kо‘rinishdagi funksiyaning aniqlanish sohasini topish uchun - oraliqdan funksiyani mavhum (haqiqiy qilmaydigan) va cheksizlikka aylantiradigan nuqtalar yoki oraliqlarni chiqarib tashlash yetarli bо‘ladi.



Yüklə 0,81 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin