Mavzu: Separabel metrik fazolar, Metrik fazoda kompkat to'plmalar, C[a,b] fazoda kompaktlik, Arsela teoremasi Reja



Yüklə 311,42 Kb.
səhifə4/7
tarix17.09.2023
ölçüsü311,42 Kb.
#144738
1   2   3   4   5   6   7
Mavzu Separabel metrik fazolar, Metrik fazoda kompkat to\'plmala

To‘plam kompakt bo‘lishining zaruriy shartlari
1-teorema. Kompakt to‘plam chegaralangan bo‘ladi.

1 1

1

1





2

1 2

2

𝑛
Isbot. M kompakt to‘plam bo‘lib, chegaralanmagan bo‘lsin deb faraz qilamiz. M dan ixtiyoriy 𝑥 nuqtani olib, radiusi 𝑟 =1 ga teng 𝑆(𝑥1,𝑟 )sharni ko‘ramiz. M chegaralanmaganligi uchun u bu sharda to‘la joylashgan bo‘lmaydi. M to‘plamning 𝑆(𝑥1,𝑟 ) sharga kirmagan biror 𝑥2 elementini olamiz. U holda (𝑥1,𝑥2)≥ 𝑟 . So‘ngra radiusi 𝑟 = (𝑥1,𝑥2)+1 ga teng 𝑆(𝑥2,𝑟 ) sharni qurib, M to‘plamning bu sharga kirmagan 𝑥3 elementini olamiz. Bunday element mavjud, chunki M chegaralanmagan to‘plam va (𝑥1,𝑥3)≥𝑟 . Bu jaryonni cheksiz davom ettiramiz. Natijada {𝑥𝑛} (𝑥𝑛 ∈𝑀)ketma-ketlik va o‘sib boruvchi {𝑟 } sonli ketma-ketlik hosil bo‘lib, ular uchun ushbu

𝑛 𝑛
(𝑥1,𝑥𝑛)+1 = 𝑟 > 𝑟 1 (𝑛=1,2,) tengsizliklar bajariladi.

𝑟

𝑛 𝑛 𝑚
Endi ixtiyoriy 𝑛 >𝑚 ≥2natural sonlar uchun (𝑥1,𝑥𝑛)+1 = 𝑟 > 𝑟 1 ≥ 𝑟 ; (𝑥1,𝑥𝑚)+1 = 𝑚
munosabatlar o‘rinli. Bulardan va quyidagi (𝑥1,𝑥𝑛)≤(𝑥1,𝑥𝑚)+ (𝑥𝑚,𝑥𝑛)
tengsizlikka asosan ushbu

𝑛 𝑚


𝑟 ≤ 𝑟 +(𝑥𝑚,𝑥𝑛), demak, (𝑥𝑚,𝑥𝑛)≥1munosabat kelib chiqadi.
Oxirgi tengsizlikdan {𝑥𝑛} ketma-ketlikning o‘zi ham va uning biror qismi ham fundamental bo‘la olmasligi, ya’ni yaqinlashuvchi bo‘la olmasligi kelib chiqadi. Bu esa M to‘plamning kompaktligiga zid. Teorema isbot bo‘ldi.


Bu teoremaning teskarisi o‘rinli emas. Masalan, l2 fazoda 𝑒1 =(1,0,0,0,), 𝑒2 = (0,1,0,0,), 𝑒3
= (0,0,1,0, ),...
elementlardan iborat chegaralangan to‘plamni tuzamiz. Bu elementlarning ixtiyoriy ikkitasi orasidagi masofa (𝑒𝑚,𝑒𝑛)= √2 ga teng (𝑚 ≠𝑛). Shuning uchun bu ketma-ketlik va uning hech qanday qismi yaqinlashuvchi bo‘lmaydi, demak, tuzilgan to‘plam kompakt emas.

Yüklə 311,42 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin