Mavzu: Tekislikda koordinatalar metodi



Yüklə 314,92 Kb.
səhifə2/5
tarix18.05.2023
ölçüsü314,92 Kb.
#116579
1   2   3   4   5
5110100-matematika o\'qitish metodikasi ta\'lim yo\'nalishi kurs

M nuqtadan ordinatalar o’qiga perpendikular tushirsak, bu perpendikularning asosi M nuqtasining ordinatasi deb ataluvchi biror y sonni tasvirlaydi.
M nuqtadan abssissasi va ordinatasi M nuqtaning koordinatalari deyiladi. M(x:y) yozuv M nuqta x abssissaga va y ordinataga ega ekanini bildiradi. Bu holda M nuqta (x; y) koordinatalarga ega deb ham aytiladi. Masalan, M(3; 5) yozuvda 3 soni — abssissa, 5 soni — ordinata.
Nuqtalarning koordinatalarini yozishda sonlarning tartibi muhim ahamiyatga ega. Masalan, M1(1; 2) va M2(2; 1) nuqtalar tekislikdagi har xil nuqtalardir (3- rasm).

Agar o’qda biror bazis tanlangan bo’lsa, u holda o’qdagi har bir vektorga to’la aniqlangan bitta son mos keltiriladi va bu son vektorning bazis bo’yicha yoyilmasining koeffitsientidan iborat bo’ladi.
l o’qda yotgan vektor shu o’qda tanlangan bazis bilan kollinear bo’ladi. Vektorlarning kollinear bo’lish shartidan
= (1)
Munosabatni yoza olamiz. (1) dagi x sonni odatda vektorning koordinatasi deyiladi. Agar x son vektorning koordinatasi bo’lsa, uning M(x) ko’rinishidagi yozuvi ham shu ma’noni anglatadi, shu bilan birga x son M nuqtaning koordinatasi degan ma’noni anglatadi.
Agar tekislikda koordinatalar boshi deb ataluvchi nuqta, o’zaro perpendikular to’g’ri chiziqlar, ularda musbat yo’nalish hamda uzunlik birligi (umuman olganda hamma yo’nalishda har xil) tanlangan bo’lsa, tekislikda Dekart koordinatalar sistemasi berilgan deyiladi. O’qlar mos ravishda abssissalar o’qi, ordinatalar o’qi (aplikatalar o’qi) deb yuritiladi. Tegishli o’qlar koordinata o’qlari deyiladi. Faraz qilaylik, tekislikda Dekart koordinatalar sistemasi berilgan bo’lsin (uni qisqacha xOy Sistema deb ham yuritiladi) va vektor koordinatalar boshi O nuqtadan chiqqan bo’lsin(2-rasm).
2-rasm.
Ta’rif. vektorning xOy sistemadagi koordinatalari deb uning koordinata o’qlaridagi proeksiyalariga aytiladi, ya’ni

Ta’rifga ko’ra x, y sonlar vektorning xOy sistemadagi koordinatalaridir; x sonni vektorning abssissasi, y ni esa uning ordinatasi deyiladi. Koordinatalari x, y dan iborat vektor simvoli bilan belgilanadi. Koordinatalar sistemasini endi koordinata o’qlaridagi birlik vektorlar bilan ko’rsatib o’tamiz.
Agar vektor koordinatalar boshidan chiqib, uning koordinatalari x, y bo’lsa, A nuqtaning koordinatalari ham shu sonlardan iborat bo’ladi. Bu ravshan vektor A nuqtaning radius-vektori deyiladi. Shunday qilib, A nuqtaning to’g’ri burchakli sistemadagi koordinatalari shu nuqta radius-vektorining koordinatalariga tengdir. vektorni o’qlardagi birlik vektorlarning yo’nalishlari bo’yicha yoyish mumkin:
Ammo , bunda A1, A2 lar A nuqtaning sistema o’qlaridagi proyeksiyasidir. Demak,

Teorema. Agar xOy sistemada {x1, y1}, {x2, y2} bo’lsa, {x1+ x2, y1+ y2} bo’ladi. (3-rasm)
3-rasm.
Isbot. Teoremani isbotlash uchun ikki vektor yig’indisining proyeksiyasi haqidagi xossadan foydalanamiz:

Teorema. Agar xOy sistemada vektor boshining koordinatalari {x1, y1} va oxirining koordinatalari {x2, y2} bo’lsa, vektorning koordinatalari {x1 x2, y1 y2} bo’ladi. Ya’ni


Isbot. Chizmaga asosan, . Bundan esa .



Yüklə 314,92 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin