Direct Method.
The basic command for taking limits in maple is
limit. In our example we would enter
>
and maple returns the limit.
Inert Method.
If we use the command with an upper case L, we obtain
>
Qafqaz Uni
Here our
desired resul
>
Positive
You can
>Limit(
>value(%
>Limit(
> value(%
One-Sid
In some
Exampl
Solution
>
Derivati
Definitio
y'=f(x)'=
provided
The limi
derivative.
Example
differenc
>
lim
x
0
tan
lim
-
x
0
lim
+
x
0
II INTER
versity
r limit problem
t.
e and Negativ
n also take the
.
tan(x+Pi/2),
%);
tan(x+Pi/2),
%);
ded Limits
cases, Maple
le: Compute
n
ive
on : The deriv
=
d the limit exi
it command ca
e: f(x)=
ce quotient wi
n
x
2
( )
cot x
( )
cot x
RNATIONA
m is displayed
ve Directions
limit of an ex
x=0, left);
x=0, right );
can compute
vative of y=f(x
sts.
an be used a
ith simplify, a
L SCIENTIF
d, but nothing
xpression from
certain one-si
x) is
along with sim
and use limit t
FIC CONFER
625
g is calculated
m both the pos
ided limits. Th
mplify to comp
o calculate the
RENCE OF Y
d. If we follow
sitive and nega
he command
pute the deriva
e derivative.
YOUNG RES
18-19 A
w up with the
ative direction
ative of a func
SEARCHER
April 2014, B
value comma
ns. Consider
ction using th
RS
aku, Azerbai
and, we obtain
e definition of
ijan
n the
f the
Qafqaz Uni
Calcula
The func
1. diff
2. D(f)
3. Diff
4. (D@
Example
Solution
>
Tangent
Calling S
Parame
f(x) - alg
X
- nam
C
- alg
a, b
- alg
Exampl
Solution
>
The Fir
Theorem
1. If f‘
2. If f‘
3. If f’
II INTER
versity
ting Derivati
ctions D and d
f (f(x),x) comp
f)(x) computes
f(f(x),x$n) com
@@n)(f)(x) co
e:Compute the
n:
t Lines
Sequence
eters
gebraic expres
me; specify th
gebraic expres
gebraic expres
le: Find an equ
n: After defini
st Derivative
m 1.Let y=f(x
(x)=0 for all x
(x)>0 for all x
’(x) <0 for all
RNATIONA
ives
diff are used to
putes and retur
s and returns f
mputes and re
omputes return
e first and sec
ssion in variab
he independen
ssion; specify
ssions; specify
uation of the l
ing f, we see t
Test and Sec
x) be continuou
xin (a,b), then
x in (a,b), then
x in (a,b), the
L SCIENTIF
o differentiate
rns f(x)'=df/dx
f(x)'=df/dx,
eturns
ns
ond derivative
Ta
Ta
ble 'x'
nt variable
the point of ta
y the plot rang
line tangent to
that f(1)=5 and
cond derivati
us on [a,b] an
n f(x) is consta
n f(x) is increa
en f(x) is decre
FIC CONFER
626
e functions. A
x,
, and
e of
angent(f(x), x =
angent(f(x), c,
angency
ge
o the graph of
d f ‘(1)=-8
ive Test
nd differentiab
ant on [a,b].
asing on [a,b]
easing on[a,b]
RENCE OF Y
Assuming That
= c, a..b, opts)
a..b, opts)
f
ble on (a,b).
.
].
YOUNG RES
18-19 A
t y=f(x) is diff
)
at the po
SEARCHER
April 2014, B
ferentiable,
int (1,f(1)).
RS
aku, Azerbaiijan
Qafqaz Uni
For the s
Theorem
1. If f’
2. If f’
Partial D
Partial d
Exampl
Solution
>
We illus
>
Compute
Entering
>
Compute
>
Conclus
This res
school based
difficulty. Fi
Maple. Also
derivative ea
WEB
BAZA
Giriş.
Müxtəlif
üzərindən ko
90-cı ill
mövcud idi:
Müə
İnfo
Bu texno
və müəssisəl
II INTER
versity
second derivat
m 2. Let y=f(x
’’(x) >0 for all
’’(x)<0 for all
Derivative
derivatives of f
le: Calculate
n: After defini
strate use of D
es .
g
es
.
sion
earch devoted
d math.This w
irstly we wrot
we had show
asily and quick
TEXNOLO
ASININ QU
f coğrafi əraz
oordinasiya olu
lərin əvvəllər
əssisənin resu
ormasiya saxla
ologiyalardan E
ər öz tələbləri
RNATIONA
tive, we have
x) have a seco
l x in (a,b), th
x in (a,b), the
functions of tw
ing
D and diff to c
. Remember th
d to teaching
work shows
te definition a
wn some grapi
kly.
OGİYASI Ü
URULMAS
E
zilərdə yerləşm
unmuş iş rejim
rindən etibarə
urslarının payl
ancı (Data Wa
ERP sistemlər k
inə uyğun olar
L SCIENTIF
following the
ond derivative
en the graph o
en the graph o
wo or more va
compute the pa
hat under appr
limit and der
how pupils m
and related iss
ical examples
ÜZƏRİND
SI, VERİLƏ
MALİ PRO
Q
miş topdan və
minin, korpor
ən müəssisələ
lanması sistem
arehouse) texn
kompaniya və
raq və daxili p
FIC CONFER
627
eorem.
on (a,b).
of f(x) is conc
of f(x) is conca
ariables are co
artial derivativ
ropriate assum
rivative relate
may lean suc
sues theorems
about topics.W
DƏ KORPO
ƏNLƏRİN
OBLEMLƏ
Kenan KIL
Qafqaz Univer
kkilic@qu.ed
AZƏRBAYC
ə pərakəndə s
rativ informas
ərin korporativ
mləri (Enterpr
nologiyası.
müəssisələrdə
potensiallarınd
RENCE OF Y
cave up on (a,b
ave down on (
omputed with
ves. Entering
mptions,
ed topics throu
h issues by t
s about topics
We hope that
ORATİV İN
TƏSVİRİ,
ƏRİNİN HƏ
LIÇ
rsiteti
du.az
CAN
satış kompaniy
iya sistemləri
v informasiya
rise Resource
bu günə kimi
dan istifadə ed
YOUNG RES
18-19 A
b).
(a,b).
Maple using
ugh the help
the help of M
s.Then, gave e
t this thesis w
NFORMAS
, ANALİZİ
ƏLLİ
ya və müəssi
bazasının (K
a vasitələrinin
Planning, ERP
geniş tətbiq ta
dərək spesifik
SEARCHER
April 2014, B
diff and D. Fo
. Entering
of Maple Pro
Maple easily
examples abou
ill help pupil
SİYA SİST
İ VƏ SORĞ
sələri, vahid
KİS) qurulmas
n inteqrasiya
P);
apmışdır. Belə k
k ERP sistemlə
RS
aku, Azerbai
or z=f(x,y),
ograms from
despite its b
ut the topics
to learn limit
TEMLƏRİ
ĞULARIN
internet şəbə
sını tələb edir
sına iki yana
ki, bəzi kompa
ər qurmuşdur.
ijan
high
being
with
t and
əkəsi
.
aşma
aniya
|