(2)
roca n = 1, 2, 3, 4, ... 40, igi iZleva martiv
ricxvebs (ramdenime Sen TviTon Seamowme). ma-
gram roca n = 41-s _ ara. Seamowme damoukide-
blad.
aseve formula:
ϕϕϕϕϕ (n) = n
2
- 79n + 1601
(3)
roca n = 1, 2, 3, 4, ...79, iZleva martiv ricx-
vebs, xolo roca n = 80 _ ara. SegiZlia Seamow-
mo.
dReisaTvis cnobili yvelaze didi martivi
ricxvia:
2
86243
_ 1.
am ricxvSi 25962 cifria!
Tanamedrove kompiuteriTac ki didi mar-
tivi ricxvebis gamoTvla Znelia da moiTxovs
did dros.
2
86243
_1 es martivi ricxvi rom vipovoT 2-
iani Tavis Tavze 86 243-jer unda gavamravloT
da Sedegs 1 gamovakloT. es Zalian didi ricx-
via!
marTlac warmoidgine, rom wertilma pirv-
el dRes gaiara 2 mm da yovel momdevno dRes
mis mier gavlili manZili orkecdeba. ra man-
Zils gaivlis is:
a) 5 dReSi?
2
5
=2
×2×2×2×2=32 mm
b) erT TveSi?
(2
30
mm)
g) or TveSi?
(2
60
mm)
d) erT weliwadSi?
(2
365
mm)
2 mm
1 dReSi
2 dReSi
3 dReSi
4 dReSi
5 dReSi
(viciT mzidan dedamiwamde manZili daax-
loebiT 150 000 000 km-ia).
dReisaTvis cnobili yvelaze didi martivi
ricxvis sidide rom vipovoT, es igivea vupasu-
xoT kiTxvas: ra manZili eqneba gavlili ganx-
ilul wertils 86 243 dReRamis Semdeg?
sainteresoa, rom 86 243 dReRame ufro
metia vidre 236 weliwadi da ganxiluli
wertili gava CvenTvis cnobili samyaros
sazRvrebs gareT gacilebiT adre, vidre saZie-
bel manZils gaivlides!
cota ram istoriidan: 1742 wels peter-
31
ricxvebis idumali samyaro
burgis mecnierebaTa akademiis wevrma x. gold-
baxma imave akademiis wevrs eilers miswera
werili, sadac Camoayaliba erTi saintereso
hipoTeza:
nebismieri
5
-ze meti naturaluri
ricxvi warmoadgens sami martivi ricx-
vis jams
.
eilerma upasuxa, rom mas ar SeuZlia am
hipoTezis damtkiceba, magram SeuZlia sxva
hipoTezis Camoyalibeba, romelic dakavSirebu-
lia pirvelTan:
yoveli
2
-ze meti luwi naturaluri
ricxvi warmoadgens ori martivi ricx-
vis jams.
200 wlis ganmavlobaSi mravali qveynis cno-
bili maTematikosebi cdilobdnen goldbax-eil-
eris hipoTezebis damtkicebas, magram uSede-
god. amave dros XX saukunis dasawyisSi am
Tvisebis Semowmebam 9 000 000-mde aCvena, rom
goldbaxis hipoTeza sworia. 1931 wels axal-
gazrda rusma maTematikosma lev Snirelmanma
mniSvnelovan warmatebas miaRwia am problemis
gadawyvetaSi da bolos 1937 w. akademikosma i.
m. vinogradovma TiTqmis bolomdis amoxsna es
problema, magram sruli damtkiceba jer aravis
mouxdenia!
Semdegi problema, romelic goldbaxis prob-
lemaze gacilebiT sainteresoa, Tavis gadawyve-
tas jerjerobiT mcirediTac ver miuaxlovda.
SemCneuli iyo, rom martivi ricxvebi araiS-
viaTad gvxvdebian P da P+2 wyvilebis saxiT
(aris erTi gamonaklisi 2 da 3): (3, 5); (5, 7);
(11, 13); da a.S. aseT martiv ricxvebs tyupebi
hqvia. ai, sakmaod didi tyupi ricxvebis wyvili:
(1000000009649, 1000000009651).
gamoTqmuli iyo da sarwmunod iTvleba hipoTe-
za:
tyupi ricxvebis simravle usasru-
l o a .
magram dRemde ar aris miRweuli araviTari
warmateba am hipoTezis damtkicebaSi.
1
L
daakvirdi piTagoras cxrilSi gamoyofil kuTxeebs. daamtkice, rom am kuTxeebSi
moTavsebuli ricxvebis jami qmnian kubebis mimdevrobebs: 1
3
, 2
3
, 3
3
, 4
3
, 5
3
, ...
2
L
ras udris 25-e kuTxeSi moTavsebuli ricxvebis jami?
1
cxadia 1+2+3+4+5+6+7+8
×9=100.
qvemoT moyvanil magaliTebSi tolobis marcxena mxares Camoweril ricxvebs Soris Casvi
saWiro maTematikuri moqmedebis niSnebi. ise rom tolobebi WeSmariti gaxdes:
1 2 3 4 5 6 7 8 9 = 100,
1 2 3 4 5 6 7 8 9 = 100, 1 2 3 4 5 6 7 8 9 = 100.
2
100; 97; 81; 68; 58; 43; 32; 21; ?
romeli ricxvi modis Semdeg?
3
L
aRmoaCine romeli wesis mixedviTaa mimdevrobis wevrebi SerCeuli:
a) 11, 31, 41, 61, 71, 101, 131, ...
b) 13, 23, 43, 53, ...
4
L
Seamowme goldbaxisa da eileris hipoTezebi ramdenime ricxvisaTvis.
5
L
aba, scade da gaarkvie ramdeni tyupi ricxvia pirvel aseulSi?
6
L
ipove yvela martivi ricxvi, romelic erTdroulad aris ori martivi ricxvis jami da
sxvaoba.
7
L
ipove yvela martivi ricxvi, romelic miiReba gamosaxulebiT:
2
1
(n - 1)(n + 2), sadac n naturaluri ricxvia.
8
L
daamtkice, rom namravli 1
.2.3.4.5. ... .19
(mokled iwereba 19! da ikiTxeba
`19-is
faqtoriali
~) iyofa 820 125-ze.
Tavsatexi
32
ricxvebis idumali samyaro
nikomax geraski (Zv. w. I s.) piTagoreli,
cnobili berZeni filosofosi da maTematikosi
werda:
`srulyofili ricxvebi lamazia, magram
lamazi nivTebi iSviaTia da araa bevri, uSno ki
gvxvdeba mravlad. uamravia TiTqmis yvela ricxvi,
maSin roca srulyofili ricxvebi cotaa
~.
Zvelma berZnebma icodnen mxolod ori
srulyofili ricxvi: 6 da 28. ra aqvT maT
saerTo da riT gamoirCevian sxva ricxvebisagan?
aba, ipove maTi gamyofebi da Semdeg Sekribe
isini. miiReb igive ricxvebs: 6=1+2+3,
28=1+2+4+7+14.
maSasadame, TiToeuli maTgani udris Tavisi
sakuTari gamyofebis jams. aseTi Tvisebis mqone
ricxvebs srulyofils uwodeben.
evklidemde (Zv. w. III s.) mxolod es ori
srulyofili ricxvi iyo cnobili. evklidem
moifiqra formula:
2
P_1
(2
P
_
1),
sadac 2
P
_
1 martivi ricxvia. am formulis
gamoyenebiT man kidev ori srulyofili ricxvi
aRmoaCina:
2
2
_
1
(2
2
_1) = 6;
2
3
_
1
(2
3
_1) = 28;
2
5
_
1
(2
5
_1)=2
4
(2
5
_1) = 16×31= 496;
2
7
_
1
(2
7
_1)=2
6
(2
7
_1) = 64 ×127 = 8128.
mexuTe srulyifili ricxvia: 33 550 336,
meeqvse _
8 589 869 056;
meSvide _
137 438 691 328;
merve _ 2 305 843 008 139 952 128.
mecxre srulyofili ricxvi gamoTvlili iyo
mxolod 1883 wels rusi soflis mRvdlis i.
v. perkuSinis mier. am ricxvSi aris 37 cifri.
2 305 843 009 213 693 951
×2
60
, sadac
(misi Sroma gmirobis tol-
fasi iyo).
cxadia aseTi ricxvebis xeliT angariSi Zalze
Znelia (TiTqmis SeuZlebelia).
meoce saukunis dasawyisSi gamoiyenes meqanikuri
saTvleli manqanebi da 1911 wels aRmoaCines
meaTe srulyofili ricxvi:
618 970 019 643 690 137 449 562 111
×2
88
,
sadac
am ricxvSi aris 54 cifri.
1914 wels aRmoaCines meTerTmete (65
cifriani) srulyofili ricxvi:
162 259 276 829 213 363 391 578 010 288 127
×2
106
da meTormete (77 cifriani)
2
126
(2
127
_1)
srulyofili ricxvi.
SemdegSi gamoigones eleqtronuli saTvleli
manqanebi da 1952 wlis 30 ianvars amerikelma
maTematikosma robinsonma, kaliforniis univer-
sitetSi gamoiyena eleqtronuli saangariSo
manqana 2
P
_1
ricxvis simartivis Sesamowmeblad.
man Tavdapirvelad gadawyvita 2
257
_1
ricxvis
simartivis Semowmeba da miiwvia lemeri, romelmac
20 wlis win TiTqmis erTi weli moandoma amis
angariSs. lemerma miiRo didi siamovneba, rodesac
dainaxa, rom manqanam miiRo igive Sedegi 18
wamSi. imisaTvis, rom mieRoT Semdegi srulyofili
ricxvi, manqanam daiwyo axali martivi ricxvebis
Zebna. man or saaTSi 42 ricxvi Seamowma,
romelTa Soris yvelaze mcires hqonda 80-is
toli cifrTa ricxvi! yvela es ricxvi aRmoCnda
Sedgenili. axali (mecamete) srulyofili ricxvi
manqanam aRmoaCina 1952 wlis 30 ianvars saRamos:
2
520
(2
521
_1),
(P = 521).
am ricxvSi 314 cifria.
imave dRis SuaRamisas manqanam aRmoaCina
meToTxmete srulyofili ricxvi. Seamowma kidev
13 evklidiseuli ricxvi, da man miagno martiv
ricxvs 2
607
_1
, romelsac aqvs 183 cifri (aTobiT
sistemaSi). es srulyofili ricxvia:
2
606
(2
607
_1),
(P = 607).
meToTxmete srulyofil ricxvs aqvs 366
cifri.
1957 wlis seqtemberSi Svedi maTematikosis
g. rizelis mier napovni iqna meTvrmete
srulyofili ricxvi. eleqtronul-saangariSo
manqanis gamoyenebiT man xuT naxevar saaTSi
daadgina 2
3217
_1
ricxvis martivoba da miiRo
meTvramete srulyofili ricxvi:
2
3216
(2
3217
_1),
(P = 3217).
masSi daaxloebiT 2000 cifria.
Semdegi srulyofili ricxvebis Zebna moiTxovs
ufro meti da meti moculobis angariSs.
saangariSo teqnika TandaTanobiT srulyofili
xdeba da 1962 w. moZebnili iqna ori axali
srulyofili ricxvi, 1965 wels kidev sami. am
ricxvebs evklidis formulaSi Seesabameba
P = 4253, 4423, 9689, 9941 da 11213.
srulyofil ricxvSi 2
11212
(2
11213
_1)
aris 3376
s
s
s
s
srulyofili r
rulyofili r
rulyofili r
rulyofili r
rulyofili ricxvebi.
icxvebi.
icxvebi.
icxvebi.
icxvebi.
angar
angar
angar
angar
angariSi da saangar
iSi da saangar
iSi da saangar
iSi da saangar
iSi da saangariSoebi
iSoebi
iSoebi
iSoebi
iSoebi
33
ricxvebis idumali samyaro
cifri!
udidesi maTematikosi edmund landau aR-
n i S n a v s :
`... dRemdis ori problemaa
gadauWreli: usasruloa Tu ara luwi
srulyofil ricxvTa simravle? _ ar
v i c i . _ a r s e b o b s T u a r a k e n t i
s r u l y o f i l r i c x v T a u s a s r u l o
s i m r a v l e ? _ m e i s i c k i a r v i c i
arsebobs Tu ara erTi mainc aseTi~.
cxadia iseTi damxmaris saSualebiT, rogoricaa
saangariSo manqanebi adamianma SeZlo aseTi
veberTela srulyofili ricxvebis dadgena.
dReisaTvis cnobilia 30-ze meti srulyofili
ricxvi romelTa Soris udidess Seesabameba:
P = 216 091.
srulyofili ricxvebis Zebnis istoria,
TvalnaTliv gviCvenebs, Tu rogor zrdis saan-
gariSo manqanebi adamianis SesaZleblobebs.
maTematikosebi yovelTvis ocnebobdnen iseT
daxmarebaze, romelic gaamartivebda maT Sromas
xangrZlivi da damRleli gamoTvlebisagan.
erT-erTi gamomTvleli mowyobiloba iyo
abaki. es saangariSo CarCo dResac gamoiyeneba
zogierT qveyanaSi.
logariTmuli cxrilebi XVII saukunis
dasawyisSi daamuSava jon neperma da aadvilebda
gamoTvlebs TiTqmis 4 saukunis ganmavlobaSi.
msoflioSi pirveli saTvlel-saangariSo
mowyobiloba (manqana) aago 19 wlis blez
paskalma 1642 wels (sur. 1).
dRes TiToeul Tqvengans aqvs saSualeba
gamoiyenos miniaturuli saangariSo manqana-
mikrokalkulatori (sur. 2), romelic saSualebas
iZleva gamoTvlebi Catardes swrafad. igi
namdvilad iqca maTematikosebis (da ara marto
maTTvis) megobrad da mxsnelad.
mikrokalkulatorze, Tu daakvirdebi ric-
xvebis klaviSebis gan-
lagebas Zalian advilad
aRmoaCen saintereso
ricxviT kanonzomiere-
bebs: romeliRaca ric-
xvebis sxvaoba yovel-
Tvis 111-is an 333-is
tolia. aba, moZebne,
romelia es ricxvebi?
a g r e T v e r o m e -
liRaca orniSna ric-
xvebis sxvaoba yovel-
Tvis 27, 198 an 594-is
tolia. zogierTi jami
yovelTvis iyofa 11-ze.
maTi moZebna ar gagi-
Wirdeba, Tu gulmod-
gined daakvirdebi da
sxvadasxva variants Sea-
mowmeb.
klaviSebze kidev sxva saintereso kanon-
zomierebebis aRmoCenac SeiZleba! ivarjiSe da
aRmoaCine! magaliTad:
3+7=10
1+5+9=15
1+9=10
3+5+7=15
2+8=10
2+5+8=15
4+6=10
4+5+6=15
1
L
dawere kent ricxvTa sasruli mimdevroba 1-dan 999-mde.
a) ras udris am ricxvebis jami?
b) Seadgine analogiuri amocana luwi ricxvebisa da naturaluri ricxvebis
SemTxvevaSi.
2
L
moZebne da gamoiyene yvelaze martivi angariSis wesi Semdegi magaliTebisaTvis:
a) 9 9 _ 9 7 + 9 5 _ 9 3 + 9 1 _ 8 9 + . . . + 7 _ 5 + 3 _ 1 .
b)
1
1
1
1
1
1
1
1
1 .
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
+
+
+
+
+
+
+
+
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
3
L
a) swrafad ipove 1
. 2.3.4.5 .6+1
ricxvis 5-ze gayofisas miRebuli ganayofi da
naSTi.
b) ipove zepirad 1000000–(1000000–{1000000–[1000000-(1000000-999999]}).
4
L
frangma maTematikosma sofi Jermenma (1776-1831), roca moswavle iyo, daamtkica, rom
K
4
+ 4, sadac K erTze meti nebismieri mTeli ricxvia, aris Sedgenili. Sen daamtkiceb?
sur. 1
sur. 2
3. j. kiknaZe
198:9=22.
594:9=66.
34
ricxvebis idumali samyaro
cnobili Sveicarieli maTematikosebis,
bernulebis ojaxis warmomadgenelma iohan III
bernulma 1773 wels berlinis akademiis SromebSi
gamoaqveyna cxrili, sadac mocemuli iyo n
raodenobis erTianebiT dawerili ricxvebis
martivi gamyofebi:
miuxedavad imisa, rom man ver SeZlo am saxis
zogierTi ricxvebis martivi gamyofebis moZebna
(n=11, 17, 29), xolo sami ricxvis (n=20, 25, 27)
gamyofebi ar iyo dayvanili martiv gamyofebamde,
miuxedavad mis mier daSvebuli Secdomebisa (n=22,
24, 26) Cven dRes SegviZlia pativi vceT mis
gigantur Sromas am didi ricxvebis martivi
gamyofebis moZebnisaTvis. cxrilSi bernulim
varskvlaviT aRniSna misTvis saeWvo SemTxvevebi.
am cxrilis gamoqveynebidan TiTqmis 200 wlis
Semdeg, 1964 wels niu-iorkSi a. beilerma
gamoaqveyna wigni
`saxaliso ricxvTa Teoria~
sadac am ricxvebs miuZRvna mTeli Tavi
saxelwodebiT
`111 ... 1111~, da Semoitana
maTTvis termini
`repiunitebi~ (`repunit~,
Semokleba inglisuri sityvebisa repeated unit _
gameorebuli erTiani). es termini qarTul
cnobarebSi jerjerobiT aRniSnuli ar aris.
aTobiT sistemaSi repiunitebs aRniSnaven R-iT.
mag. R
1
= 1, R
2
= 11 da a.S.
maTematikosebi muSaoben am cxrilis gafar-
Toebaze da 1975 wlisaTvis cxrilSi n-ma miaRwia
3000 (s. eits), magram masSi sakmao raodenobis
uzustobebia (amJamad am uzustobebis nawili
likvidirebulia da yvela n = 162 ricxvisaTvis
moZebnilia martivi gamyofebi).
`111 ... 1111~ _ repiunitebi
gansakuTrebul interess iwvevs martivi
repiunitebi. ukve damtkicebulia, rom R
1
, R
19
(1918 w.), R
23
(1929 w.), R
317
(1978 w.) da R
1037
(1985 w.) martivi ricxvebia. e.i. repiunitebis
ojaxidan jer-jerobiT cnobilia mxolod xuTi
martivi ricxvi.
aRmoCenilia repiunitebis mravali saintereso
Tviseba, albaT bevri jer kidev ucnobia.
namravli R
i
×××××R
j
(-i, -Ji indeqsebia _ natu-
raluri ricxvebia), rodesac
j
i
≥
≥
9
, war-
moadgens palindromul ricxvs ( 12... j ... 21
saxisas). ricxvi palindromi ewodeba naturalur
ricxvs, romlis Canaweri emTxveva misi sarkuli
anareklis Canawers. magaliTebi:
11111
×××××111 = 1233321,
111
2
= 12321.
Tu
9
>
≥ j
i
, maSin R
i
×××××R
j
namravli ar aris
palindromi.
35
ricxvebis idumali samyaro
1
L
romeli ricxvebiT SeiZleba Sec-
valo asoebi, rom cxra Sesak-
rebTa jami gaxdes repiuniti?
3
L
romeli ori repiunitis namravlia ricxvi 123455554321?
4
L
avtomobilebis gayidvis Semdeg firmis Semosavali gaxda 1111111 dolari. ramdeni avtomo-
bili gauyidia firmas, Tu TiToeulis fasi erTnairi iyo?
5
L
cxadia: 121 = 11
××××× 11,
11211 = 111
×××××101,
1112111 = 1111
×××××1001.
e.i. palindromebi 121, 11211, 1112111 ar arian martivi ricxvebi. daamtkice, rom
erTeuli
erTeuli
n
n
11
...
1
2
1
...
11
repiuniti nebismieri n-isaTvis ar aris martivi ricxvi.
6
L
SegiZlia oTxi 2-ianiT da Svidi 5-ianiT miiRo repiunitebi?
7
L
Tu 12 345 679 gaamravleb 9-ze, miiReb repiunits (Seamowme). romel ricxvze unda gaamrav-
lo mocemuli ricxvi, rom miiRo a) mxolod xuTianebiT da b) mxolod cxrianebiT dawe-
rili ricxvebi.
8
L
dawere formula, romliTac miiReb repiunitebs.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
+
2
L
romeli ricxvebiT Secvlidi asoebs?
R R R R R R R
R R R R R R R
×××××
REPUNITINUPER
Ð Å Ï Ü Þ Í È Ò
36
ricxvebis idumali samyaro
`zepiri angariSi~
_ cnobili rusi mxatvris bogdanov-belinskis farTod cnobili
namuSevrebidan erT-erTia, romelic moskovis tretiakovis galereaSi inaxeba. mxatvarma daxata
Tavisi skolis erTi gakveTili da maswavleblis rolSi warmoadgina cnobili pedagogi s. a. raCinski.
kargad daakvirdi suraTs. masze Sen aRmoaCen Zveli saxalxo skolis moswavleebis cxovrebas
maTematikis gakveTilze. dainaxav maT sxvadasxva saxes, xasiaTs, maZiebel gonebas, sazrianobas da
niWierebas. mxatvari gadmoscems maT gatacebas skoliT da amasTan erTad maswavleblis unars
daainteresos bavSvebi ... magaliTi, romlis amoxsniTac isini gatacebuli arian dafaze weria. ai
isic:
Sen mas zepirad amoxsni?
Dostları ilə paylaş: |