42
arqimedes aRmoCena
mTavari Tvisebebi. magram, cotam Tu icis, rom
man faqtiurad aRmoaCina meTodi, romelic
safuZvlad daedo maTematikis erT-erTi Tana-
medrove dargis _ integraluri aRricxvis
ganviTarebas! misi gamoyenebiT arqimedem gansaz-
Rvra paraboluri segmentis farTobi (parabo-
lis kvadratura), birTvis moculoba da sxv.
arqimedes saxelTan dakavSirebulia sxvadas-
xva legenda. magaliTad
`legenda mefe hieronis
oqros gvirgvinis Sesaxeb
~, abazanidan amosvlis
Semdeg cnobili gamoTqma
`heureka~ _ `evrika~
(vi pove).
Tqven ukve iciT, rom zogjer intuicia
gvRalatobs, magram xSir SemTxvevaSi igi udidesi
aRmoCenis wyaroa! swored fizikuri intuicia
udevs safuZvlad yvela drois erT-erT udides
maTematikur aRmoCenas _ arqimedes mier integ-
raluri aRricxvis aRmoCenas. igi ambobda:
`ramdenime maTematikuri amocana meqanikis
saSualebebiT gamovikvlie
~*.
arqimedes gadmocemiT demokritem gansazRvra
konusis moculoba: igi tolia im cilindris
moculobis erTi mesamedis, romlis simaRle da
fuZis farTobi igivea rac konusis. magram
araferia cnobili misi meTodis Sesaxeb. evdoksi
iyo pirveli vinc daamtkica demokrtes mosazreba.
Zveli berZnebi garkveuli azriT
`koordi-
natTa meTods
~ icnobdnen. isini sibrtyeze
wertilTa geometriuli adgilis SeswavlisaTvis,
moZravi wertilidan winaswar fiqsirebul aTvlis
or RerZamde manZils ganixilaven.
sur. 1-ze naCvenebia e.w. dekartes marTkuTxa
koordinatTa XOY sistema sibrtyeze. wertilTa
geometriuli adgili, romlebic akmayofileben
pirobas:
2
2
2
R
)
(
)
(
=
−
+
−
b
y
a
x
(piTagoras
Teorema), warmoadgens R radiusian wrewirs
O(a,b) centriT.
axla gavyveT arqimedes
`azris jaWvs~ da
ganvixiloT rogori meTodiT gansazRvra birTvis
moculoba: sibrtyeze XOY marTkuTxa koordi-
natTa sistemaSi R radiusiani wrewiri exeba
koordinatTa O saTaves da misi O
1
centri OX
RerZze mdebareobs. iqvea marTkuTxa samkuTxedi,
marTi kuTxiT O wertilSi, agreTve 2R da 4R
gverdebiani marTkuTxedi (sur. 2). arqimedem
warmoidgina wrewiris, samkuTxedis da marTkuT-
xedis brunva OX RerZis garSemo. Sesabamisad
miiRo birTvi, konusi da cilindri. cxadia
konusis simaRle da fuZis wris radiusi igivea
rac cilindris da 2R udris (sur.2). Tanamedrove
aRniSvnebiT am wris gantolebas aqvs saxe:
x.
y
x
y
x
R
2
R
)
R
(
2
2
2
2
2
=
+
⇒
⇒
=
+
−
(1)
warmovidginoT nebismier A wertilze OX
RerZis marTobulad gatarebuli MN sibrtye.
igi gadakveTs ra birTvis, konuss da cilindrs
kveTaSi miiReba wreebi (sur. 2, marjvniv), romelTa
farTobebi Sesabamisad tolia:
2
2
,
x
y
π
π
(radgan
) da
.
)
R
2
(
2
π
(1) gantolebis orive mxare gavamravloT
π
R
2
-ze. davinaxavT, rom gardaqmnil gantolebaSi
gaCndeba ganxiluli farTobebi:
(*)
cxadia, radgan MN sibrtyis gatareba SeiZleba
nebismier wertilze, amitom x da y cvladi
sidideebia. maSasadame birTvisa da konusis kveTis
farTobebic cvladia, xolo cilindris _
mudmivi.
arqimedem gamoavlina genialuri azrovneba
da intuiciis araCveulebrivi unari: man (*)
gantolebaSi SeniSna Tavis mier aRmoCenili
berketis wonasworobis piroba (momentebis** wesi).
man dauSva, rom Wrilebi Zalian mcire h sisqis
erTi da igive masalisagan damzadebuli diskoebia,
e.i. sxvadasxva simZime aqvT. Tu Tanamedrove
ganmartebebs gamoviyenebT, masalis simkvrives
ρ-
Ti aRvniSnavT, xolo simZimis Zalis aCqarebas g-
Ti maSin, (*) gantoleba ase gardaiqmneba:
* Cp. The Method of Archimedes, edited dy Thomas L. Heath (arqimedes meTodi, tomas l. xitis gamocemuli),
Cambridge, 1912, P. 13. am patara wigns uwodeben
`Method~ (`meTodi~). arqimedes es naSromi xeibergis mier
mxolod 1906 wels iqna aRmoCenili (ix. Ãåéáåðã È., Íîâîå ñî÷èíåíèå Àðõèìåäà, Îäåññà,
1909).
** berketi wonasworobaSia, Tu brunvis RerZis mimarT masze modebuli Zalebis momentebis algebruli jami nulis
tolia. Zalis momenti Zalis modulisa da misi mxaris namravlis tolia.
sur. 1
~
43
arqimedes aRmoCena
gx.
h
g
h
y
g
h
x
ρ
π
=
ρ
π
+
ρ
π
2
2
2
)
R
2
(
)
(
R
2
(2)
sadac
g
h
y ρ
π
2
sibrtyiT birTvis kveTis
Sesabamisi diskos simZimis Zalaa,
g
h
x ρ
π
2
_
konusis, xolo
g
hρ
π
2
)
R
2
(
_ cilindris. amitom
R
2
2
g
h
y ρ
π
,
d a
Sesabamisi Zalebis momentebia O wertilis mimarT.
maSasadame (*) gantoleba gamoxatavs im faqts,
rom ori Zalis momenti gawonasworebulia
mesamiT. amitom arqimedem OX RerZi warmoidgina
rogorc uwono berketi da kveTaSi miRebuli
diskoebi ase gaanawila: cilindris ganivi WriliT
miRebuli disko Tavis adgilze datova, e.i. O
wertilidan x manZilze (B wertilSi), xolo
birTvisa da konusis Wrilebis diskoebi berketis
O wertilidan marcxniv 2R manZilze erTi da
igive D wertilSi warmoidgina dakidebuli
(sur. 2).
cxadia, rodesac x icvleba 0-dan 2R-mde,
miiReba cilindris yvela ganivkveTi, romlebic
cilindrs mTlianad avseben. cilindris yovel
ganivkveTs Seesabameba ori ganivkveTi, romlebic
berketis D wertilSia dakidebuli da isini
birTvsa da konuss avseben. amitom berketis D
wertilSi dakidebuli birTvi da konusi O
wertilis mimarT imyifebian wonasworobaSi
cilindrTan, ise rogorc maTi Sesabamisi kveTebi.
birTvis moculoba V-Ti aRvniSnoT da konusis
moculobasTan dakavSirebiT demokrates aRmoCena
gamoviyenoT. gadavideT diskoebis momentebidan
Sesabamisi sxeulebis momentebze, miviRebT:
,
R
2
)
R
2
(
R
V
3
R
2
)
R
2
(
R
2
2
2
π
=
⎟
⎠
⎞
⎜
⎝
⎛
+
π
(**)
saidanac birTvis moculoba
.
3
R
4
V
3
π
=
(3)
ganxilul msjelobaSi gadamwyvet nabijs (*)
gantolebidan (**) gantolebaze gadasvla
warmoadgens, e.i.
ganivkveTebis mier mTeli
sxeulebis gavseba.
maTematikuri simkacris
udidesi berZnuli tradiciebis warmomadgenelma
arqimedem Zalian kargad icoda, rom es mixvedra
iyo da ara damtkiceba. amis Sesaxeb igi aRniSnavda:
`faqti, romelTanac Cven mivediT, sinamdvileSi
gadmocemuli msjelobiT damtkicebuli araa.
magram am msjelobam mogvca Taviseburi miTiTeba,
rom Sedegi sworia
~. war-
modgenili idea ganxiluli
amocanis moTxovnebis saz-
Rvrebs scildeba da ganu-
zomlad didi gasaqani aqvs.
ganivWrilebidan mTlian
sxeulebze gadasvla Tanamed-
rove enaze aris usasrulo
mcire nawilebidan mTlian
sidideze _ diferencialidan
integralze gadasvla. udi-
desi moazrovne arqimede ase
afasebda Tavis meTods:
`me
darwmunebuli var, rom es
meTodi arc Tu mcire sar-
geblobas moitans maTema-
tikaSi; saxeldobr me vxedav,
rom vinme axlandeli an
momavali mkvlevarebi, gaec-
nobian ra am meTods, misi daxmarebiT daaskvnian
sxva Teoremebs, romlebic me jer TavSi ar
momsvlia
~.
mogagonebT, rom arqimede Zv. w. III saukuneSi
cxovrobda, integraluri aRricxva ki q.S. XVII
saukuneSi Seiqmna, e.i. TiTqmis oci saukunis Semdeg.
es fati cxadyofs arqimedes geniis sidiades. igi
samarTlianad iTvleba statikisa da hidros-
tatikis fuZemdeblad. eWvgareSea, rom man mraval
gamogonebebTan erTad aago zusti meqanikis
`margaliti~ _ planetariumi, romelic Cvenamde
mouRwevel arqimedes erT-erT naSromSi iyo
aRwerili.
romaelma sardalma marcelma sirakuzis aRebis
Semdeg planetariumi, rogorc samxedro nadavli
romSi gadaitana. SemdegSi misgan markus talius
ciceroni (Zv. w. 106-43), Zveli romaeli poli-
tikuri moRvawe, oratori da mwerali aRfrTo-
vanebuli iyo. cnobilia gadmocema romaelebis
sur. 2
44
arqimedes aRmoCena
Setevebisagan qalaq sirakuzis Tavdacvis Sesaxeb.
sirakuzelebi sami weli igeriebdnen marcelis
xelmZRvanelobiT romaelebis Tavdasxmebs. am
periodSi arqimede igonebda da agebda sxvadasxva
samxedro manqanebs, romlebic momxvdurT SiSis
zars scemdnen. magram sirakuzi mainc daeca.
legendis Tanaxmad romeliRac uxeSma romaelma
mebrZolma, marcelis brZanebis miuxedavad moxuci
arqimede mokla im momentSi, rodesac igi silaze
geometriul figurebs xatavda. Tu es epizodi
mogonilia, is mainc sakmaod damaxasiaTebelia.
arqimede Tavisi Sromebidan yvelaze mniSvne-
lovan miRwevad Tvlida Semdegs: birTvis mocu-
loba erTnaxevarjer naklebia masze Semoxazuli
cilindris moculobaze
(sur. 3), e.i.
cil
b
V
3
2
V =
(4)
arqimedes anderZis
Tanaxmad misi saflavis
qvaze cilindrSi Caxa-
zuli birTvi iyo amok-
veTili. gardacvalebidan
TiTqmis saukune-naxevris
Semdeg swored am niSnis
mixedviT eZebda ciceroni geniosis saflavs,
romelic amJamad kvlav dakargulia.
1
Seamowme arqimedes mtkicebis WeSmariteba, rom birTvis moculoba erTnax-
evarjer naklebia masze Semoxazuli cilindris moculobaze: V
b
=2V
cil
/
3.
2
sur. 4-ze gamosaxulia birTvi da
cilindri fuZeebTan ori toli konusuri ZabriT.
cilindris simaRle da fuZis diametri birTvis
diametris tolia. vTqvaT es sxeulebi damzadebulia
erTnairi nivTierebisagan. romeli ufro mZime iqne-
ba?
sur. 3
sur. 4
3.
amocanebi
arqimedemde cnobili iyo
`kavalieris principi~: Tu sivrceSi mocemulia
ori sxeuli da mocemuli sibrtyis paraleluri nebismieri sibrtye
am sxeulebis gadakveTisas qmnian or figuras, romelTa farTobebi
tolia: S
1
=S
2
(am dros TiToeuli sxeulis kveTis farTobi sazoga-
dod cvladia), maSin am sxeulebis moculobebic tolia: V
1
=V
2
.
am principis gamoyenebiT daasabuTe arqimedes formulis: V
b
=2V
cil
/3
WeSmariteba.
miTiTeba:
R radiusian wrewirze SemoxazeT kvadrati (sur. 5) gaatare diagonalebi. warmoidgine
am nakvTebis brunva vertikaluri AB RerZis garSemo. miiReb R radiusian birTvs, masze
Semoxazul cilindrs, cilindrSi
`ormag~ wriul konuss wveroebiT birTvis centrSi.
sur. 5
sur. 6
45
arqimedes aRmoCena
daamtkice
sur. 7
sur. 8
6
`meTodis~ me-9 winadadeba: sferuli segmentis simZimis cen-
tri mdebareobs mis RerZze da mas yofs ise, rom wverosTan
mimdebare nawili ise efardeba danarCen nawils, rogorc
segmentis simaRlisa da damatebiTi segmentis simaRlis gaoTxkecebeli jami Seefar
deba
segmentis simaRlisa da damatebiTi segmentis gaorkecebl jams:
4(2 R
) .
2(2 R
+
−
=
+
−
x
h
h
h - x
h
h)
x sferuli segmentis simZimis centris abscisa, _ sferuli
segmentis
simaRle,
R _ segmentis radiusi.
7
samyaroSi Cvengan yvelaze ufro daSorebul obieqtebamde, kvazarebamde, manZili 5-13
miliardi sinaTlis weliwadia. sayrdeni wertili rom hqonoda, SeZlebda arqimede
dedamiwis `awevas~ berketiT? dedamiwis masaa 6.10
24
kg, radiusi _ 6400 km, s.
w. aris
manZili, romelsac sinaTle gaivlis erT weliwadSi. sinaTlis siCqarea 300 000 km/wm,
g≈10 m/wm
2
.
ujredovani gumbaTi da fulerenebi
cnobilma amerikelma arqi
teq-
torma da inJinerma riCard bakmin ster
fulerma daamuSava msubuqi da magari
`geode ziuri TaRebi~, kun struqciebi
foladis swori Rero
ebi
sagan. am
meTodiT man moskovSi, sokol
nikebSi
1959 wels aago saga mofeno pavilioni.
igi aris `}jqon-67~ pavi-
lionis ujredovani gumbaTis av tori.
mas burTis forma aqvs.
80-iani wlebis Sua periodSi
mecnierebma aRmoaCines naxSir
badis
giganturi molekulebi.
gumbaTis avtorma gamoiyena igive
princi pebi, romlis safuZ
velzec
`aigeba~ es giganturi mo
le
kulebi.
yvelaze cnobil molekulas C
60
aRmoCenis avto
rebma Searqves bakmin-
sterfu
le
reni (futbolino), xolo
nax
Sirbadis giganturi mole
kulebis
mTel klass _ fule
renebi.
dReisaTvis bevri mecnieri am
molekulebis intensiur kvlevas ewe va
da yovelwliurad aTasobiT sta
tia
ibeWdeba maT Sesaxeb.
4
`meTodis~ me-7 winadadeba: birTvuli segmentis moculoba ise Seef-
ardeba imave fuZis farTobisa da simaRlis mqone konusis moculobas,
rogorc birTvis radusisa da damatebiTi segmentis simaRlis jami
Seefardeba damatebiTi segmentis simaRles:
5
`meTodis~ me-6 winadadeba:
naxevarbirTvis simZimis centri (O)
mdebareobs mis RerZze da am RerZs yofs ise, rom naxevarbirTvis
wverosTan mimdebare nawili (a) danarCen nawils (b) Seefardeba
ise, rogorc 5:3 (sur. 8).
bs
k
V
R (2 R
) .
V
2 R
+
−
=
−
h
h
46
magiuri kvadratebi
magiuri kvadratebi
magiuri kvadratebi
magiuri kvadratebi
magiuri kvadratebi
ujredebiani rveulis furcelze daxaze
kvadrati (3×
××××3 = 9). gamoyofili kvadratis
ujredebSi TanmimdevrobiT Cawere ricxvebi 1-
dan 9-is CaTvliT (sur. 1). kuTxeebSi ganlagebul
ricxvebs adgilebi Seucvale ise, rogorc sur. 2-
zea naCvenebi. axla am kvadrats forma ise
Seucvale, rom ricxvebi 2, 5, 8 da 4, 5, 6 diagona-
lebze ganlagdes (sur. 3) miRebuli kvadrati
moabrune saaTis isris moZraobis (an sawinaaR-
mdego) mimarTulebiT 45
0
-iani kuTxiT da Sen
miiReb e.w. mesame rigis magiur kvadrats (sur. 4).
amboben, rom is pirvelad gamoCnda CineTSi daax-
loebiT 2800 wlis win Cvens welTaRricxvamde
saxelwodebiT
`lox-Su~. is dRemde gamoiyeneba
rogorc Tilisma da gamoxatulia amuletze ise,
rogorc sur. 5-zea naCvenebi.
sityva
`rigi~ am SemTxvevaSi aRniSnavs kvad-
ratis erT gverdze ujredebis raodenobas. bu-
nebrivad dagebadeba kiTxva: riT aris saintereso
magiuri kvadrati? aba, daakvirdi mTavar diago-
nalebze, TiToeul horizontalur da vertika-
lur mwkrivebze ganlagebul ricxvebs, maTi jami
erTi da igivea da udris 15. mas mesame rigis
magiuri kvadratis mudmiva ewodeba (mudmiva aqvs
yvela magiur kvadrats). meore rigis magiuri
kvadrati ar arsebobs, xolo mesame rigis _
erTaderTia (Tu ar CavTvliT im 7 magiur
kvadrats, romlebic miiRebian ganxilulisagan
mobrunebiT da arekvliT).
axla scade meoTxe rigis (4×
××××4 = 16 _
gverdSi oTxi ujra) magiuri kvadratis Sedgena.
Tu zemoT ganxilul wess gamoiyeneb, ufro
advilad miiReb erT-erTi saxis meoTxe rigis
magiur kvadrats (damtkicebulia, rom maTi
ricxvia 880!). magram, Tu mainc gagiWirdeba,
daakvirdi didi germaneli mxatvris albrext
diureris mier 1514 wels Seqmnili graviuris*
ilustracias (sur. 6).
mis marjvena zeda kuTxeSi warmodgenilia erT-
erTi meoTxe rigis simetriuli magiuri kvadrati.
mas diureris magiur kvadrats uwodeben
(aRsaniSnavia, rom diureri maTematikiTac iyo
gatacebuli). Tu Sen mas kargad da guldasmiT
gaecnobi aRmoaCen, rom ara marto nebismier hori-
sur. 1
sur. 4
sur. 5
sur. 6. albrext diureri.
`melanqolia~.
graviura spilenZze. 1514.
sur. 2
sur. 3
* graviura (frang. gravure) _ 1. raime magari masalis (liTonis, xis, qvis, minis da sxv.) gluv zedapirze amokveTili
an amoWrili naxati. 2. aseTi naxatis anabeWdi qaRaldze.
47
magiuri kvadratebi
zontalur, ver-
tikalur da mTavar
diagonalur mwkri-
vebSi ganlagebuli
c i f r e b i s j a m i
udris 34-s (mud-
miva), aramed kvad-
ratis SigniT kidev
ramdenime patara
kvadratSi da ara
marto maTSi!
sainteresoa, rom zemoT ganxiluli wesiT
miRebul meoTxe rigis simetriul magiur kvad-
rats diurerma meore da mesame vertikalur
mwkrivebs adgilebi Seucvala (sur. 7) magram amiT
simetriuli magiuri kvadrati ar Secvlila
(mudmiva _ 34 igive darCa). daakvirdi qveda
horizontaluri mwkrivis or SuaTana ricxvs
da Sen advilad mixvdebi am Secvlis mizans.
sur. 8-ze naCvenebia XVIII saukuneSi didi
maTematikosis leonard eileris mier Sedgenili
me-8 rigis naxevrad
magiuri kvadrati,
yoveli horizon-
taluri an verti-
kaluri mwkrivis
ricxvebi jamSi
260-s iZleva (dia-
gonalebis gaswvriv
ara, amitomaa naxev-
rad magiuri), xo-
lo mwkrivis na-
xevari _ 130-s.
warmoidgine,
rom es kvadrati saWadrako dafaa da mxedari
iwyebs moZraobas ujredidan, romelSic weria
ricxvi 1. igi agrZelebs moZraobas. ra xdeba am
dros? Tu am kiTxvas upasuxe da miageni raime
kanonzomierebas, gamoiyene igi da aage me-8 rigis
sxva naxevrad magiuri kvadrati. ramdenia aseTi?
aravin icis (Zalian bevria). dReisaTvis isic ki ar
aris cnobili ramdeni me-5 rigis magiuri kvadrati
arsebobs, Tumca zogierTi SefasebiT is 13
milions aWarbebs!
magiuri kvadratebi arseboben yvela rigis,
4-ze meti, im luwi rigebis garda, romlebic ar
iyofian 4-ze. magaliTad, meeqvse rigis magiuri
kvadrati ar arsebobs. aseve ar arseboben me-10,
me-14 da a.S. rigis magiuri kvadratebi (isini
SeiZleba naxevrad magiuri iyos).
magiuri kvadratis rigi aRvniSnoT n-iT (maSin
kvadratis ujredebis ricxvi toli iqneba:
n
×××××
n = n
2
. am ujredebSi ricxvebi unda Caiweros
1-dan n
2
-is CaTvliT TanmimdevrobiT), xolo
mudmiva _ C-Ti. zemoT ganxiluli magaliTebidan
Cans, rom roca n = 3, maSin C = 15. xolo, roca
n = 4, maSin C = 34. agreTve cnobilia roca n = 5,
maSin C = 65.
mexuTe rigis magiuri kvadratis ageba
imoqmede Semdegi ganawesiT
(algoriTmiT):
1. gamoyavi kvadrati
5
×××××5 = 25;
2. nebismier ujraSi Cawere
ricxvi 1;
3. am ujridan gaakeTe
saWadrako mxedris verti-
kaluri svla (erTi ujra
marjvniv da ori ujra zeviT)
da dasvi ricxvi 2;
4. gaimeore mesame punqtis
miTiTeba da dasvi ricxvi 3.
da ase Semdeg dasvi ricxvebi
zrdis rigis mixedviT, sanam
ar Seavseb mTel kvadrats,
5. Tu mxedris svlas
gamoyavxar kvadratis zeda
napiris gareT, dabrundi
qveviT da Seavse mxedris daw-
yebuli svla. dasvi momdevno
ricxvi (4);
6. Tu ki svlas gamoyavxar
marjvena napiris gareT,
dabrundi marcxniv da kvlav
Seavse mxedris svla. dasvi
momdevno ricxvi (5);
7. Tuki ujra dakavebulia,
daubrundi wina daweril
ricxvs da pirdapir mis qveviT
dawere momdevno ricxvi (6);
es moqmedebebi unda Seas-
rulo kvadratis srul
Sevsebamde. sur. 9-ze naCvenebia
am algoriTmis Sesabamisi
svlebi.
sur. 7
sur. 8
sur. 9
1
2
3
4
5
6
7
48
magiuri kvadratebi
1
L
rogorc aRvniSneT, meoTxe rigis (n = 4) magiuri kvadratebis ricxvia 880,
xolo mexuTe rigis ( n = 5) _ camet milionze meti. sainteresoa Sen ramdenis
povnas SeZleb?
2
L
daadgine, rogori Tanafardoba iqneba n-sa da C-s Soris (e.i. maT Soris kavSiri warmoad-
gine formuliT). Tu Sen amas SeZleb, maSin advilad mixvdebi, ratom aris me-8 rigis
naxevrad magiuri kvadratis mudmiva 260. ufro metic, Sen SeZleb nebismieri magiuri
kvadratis mudmivas gansazRvras Sedgenis garaSe.
Dostları ilə paylaş: |