Chiziqli bog`liq va chiziqli erkli vektorlar sistemalari
n o`lchovli m ta vektorlardan iborat (*) vektorlar sistemasi berilgan bo`lsin.
a1x2 + a2x2 + … + amxm = θ (bu yerda θ - n o`lchovli nol vektor) vektor tenglama yoki shuning o`zi m ta noma`lumli n ta chiziqli bir jinsli tenglamalar sistemasini tuzamiz.
a1x2 + a2x2 + … + amxm=θ vektor tenglama aniq bo`lib, yagona trivial (nol) yechimga ega bo`lsa, (*) vektorlar sistemasi o`zaro chiziqli bog`lik bo`lmagan yoki chiziqli erkli vektorlar sistemasi deyiladi.
a1x2 + a2x2 + … + amxm = θ vektor tenglama aniqmas bo`lib, trivial yechimdan tashqari notrivial (nolmas) yechimlarga ham ega bo`lsa, (*) vektorlar sistemasi chiziqli bog`lik sistema deyiladi. Aniqlik uchun nolmas (x1; x2; …; xm) yechimda xm≠0 bo`lsin. Unda
a(m) = a1 a2- … am-1
munosabat o`rinli bo`lib, (*) vektorlaridan biri qolganlarining chiziqli kombinatsiyasiga teng. Bu esa sistemaning chiziqli bog`liqligini ang-latadi.
Agar vektorlar sistemasi yagona nolmas vektordan tashkil topgan bo`lsa chiziqli erkli; yagona nol vektordan iborat bo`lsa, chiziqli bog`-liqdir. Chiziqli erkli sistemaning har qanday qism osti sistemasi – chi-ziqli erkli, chiziqli bog`liq sistemaning har qanday kengaytirilgan siste-masi esa chiziqli bog`liqdir. Demak, tarkibida nol vektor mavjud har qanday vektorlar sistemasi chiziqli bog`liqdir.
Berilgan sistema vektorlari koordinatalaridan
matritsa tuzamiz.
(*) vektorlar sistemasining chiziqli erkli yoki chiziqli bog`liqligi quyidagi teorema yordamida aniqlanadi.
Dostları ilə paylaş: |