Omonov shahzod shoimovich



Yüklə 1,82 Mb.
səhifə16/17
tarix05.12.2023
ölçüsü1,82 Mb.
#173163
1   ...   9   10   11   12   13   14   15   16   17
Omonov 2023

x, м

b)


c)

x, м

Rasm 3. 3. konsentratsiya profillari , , , , , (a); (b); (V).



cm

x, м

cm

а)


cm

b)

x, м


x, м

c)

Rasm 3.4. konsentratsiya profillari , , , , , (a); (b); (V).


x, м

а)

103cim, м33


103cim, м33


x, м

b)


c)

103cim, м33


x, м

Rasm 3.5 . konsentratsiya profillari , , , , , ( a ); ( b ); ( c ).


x, м

103cim, м33

2

1

cm

а)


103cim, м33

b)

2

1

x, м


c)

1

2

3

x, м

Rasm 3.6. Konsentratsiya profillari va  , t = 3600 s da turlicha , m/s, , , , ( a , b ) ; ( c ) .



r, м

x, м

ca

x, м

r, м

ca

b)

c)


x, м

r, м

ca

Rasm 3.7. Sirtlar , t = 3600 s da , m/s, , , ( a ); ( b ); ( c ).


x, м

r, м

ca

а)


r, м

ca

x, м

b)


r, м

ca

x, м

c)

Rasm 3.8. Sirtlar , t = 3600 , m/s, , , (a); (b); (c).
XULOSA
Makro- va mikrog’ovakli silindrik zonalardan tuzilgan, fraktal strukturali muhitlarda modda ko’chishi masalasi qo’yilgan va sonli yechilgan. Modda ko’chish tenglamasida konvektiv haddagi hosila tartibi ni ikkidan kamayishi makrog’ovakda konsentrasiya maydoninig kengroq tarqalishiga olib kelishi ko’rsatilgan. Bunday makrog’ovakdagi «tez diffuziyalanish» mikrog’ovakda ham «tez diffuziyalanishga» olib keladi. Modda ko’chish tenglamasida diffuziya hadidagi hosila tartibining kamayishi mikrog’ovakda «tez diffuziyalanishga» va profillarining kamroq yoyilishiga olib kelgan.
G'ovak muhitda oqimdagi moddalarning harakatini modellashtirish suv, tuproq yoki havoning yomonlashishini bashorat qilish, konchilik, biologiya, kimyo va boshqalar kabi turli sohalarda juda muhimdir. Modda ko`chishi jarayoni konvektiv-diffuziya tenglamasi bilan ifodalanadi. Uchinchi bobda tenglama oshkor chekli ayirmalar usuli yordamida yechilgan hamda fraktal g'ovak muhitda moddalarning bo'ylama va ko'ndalang yo'nalishda ko`chishi jarayonlari modellashtirilgan va bir va ikki o’lchovli fraktal konvektiv-diffuziya tenglamasi bilan ifodalangan. Natijalar hosila tartiblarning turli qiymatlari yordamida olingan. Olingan grafik va elektron jadvallardan shunday xulosa qilish mumkinki, hosilalarning tartibini kamaytirish konsentratsiya profillarining kengroq yoyilishiga olib keladi.

ADABIYOTLAR



  1. Bajracharya K., Barry D.A. Nonequilibrium solute transport parameters and their physical significance: Numerical and experimental results // J. Contam. Hydrol., Vol. 24. 1997. Pp.185 – 204.

  2. Bear J. Dynamics of fluids in porous media. American Elsevier Publishing Company. 1972. – 764 p.

  3. Becker M.W., Shapiro A.M. Tracer transport in fractured crystalline rock: evidence of non-diffusive breakthrough tailing // Water Resources Research, 36. 2000. P. 1677-1686.

  4. Beibalaev V.D., Shabanova M.R. Finite-difference scheme for solution of a fractional heat diffusion-wave equation without initial conditions. // Thermal Science J. 2015, Vol. 19, No. 2, pp. 531-536.

  5. Benson D.A., Wheatcraft S.W., Meerschaert M.M. Application of a fractional advection–dispersion equation // Water Resour. Res. 36, 2000. Pp. 1403–1412.

  6. Brusseau M.L., Rao P.S.C. Sorption nonideality during organic contaminant transport in porous media. // CRC Crit. Rev. Environ. Control 19(1). 1989. Pp. 33–99.

  7. Caputo M. Models of flux in porous media with memory //Water Resour. Res. 36(3). 2000. Pp. 693–705.

  8. Chen J.Sh., Chen J.T., Chen W.L., Liang Ch.P., Lin Ch.W. Analytical solutions to two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to first- and third-type inlet boundary conditions // Journal of Hydrology 405. 2011. Pp. 522–531.

  9. Chen J.Sh., Chen J.T., Chen W.L., Liang Ch.P., Lin Ch.W. Exact analytical solutions for two-dimensional advection–dispersion equation in cylindrical coordinates subject to third-type inlet boundary condition // Advances in Water Res. Vol. 34. 2011. Pp. 365–374.

  10. Cihan A., John S.T. 2-D radial analytical solutions for solute transport in a dual-porosity medium. // Water Resources Research, Vol. 47. Pp. 1-11. 2011.

  11. Coats, K.H., Smith, B.D. Dead-end volume and dispersion in porous media // Society of Petroleum Engineering Journal, 4(1), 1964, 73-84.

  12. Dehghan M. Fully explicit finite difference methods for two-dimensional diffusion with an integer condition // Nonlinear Anal. Theory Methods Appl. 48. 2002. Pp 637–650.

  13. Dehghan M. Fully implicit finite differencemethodsfor two-dimensional diffusionwith non-local boundary condition // J. Comput. Appl. Math. 106. 1999. Pp 255–269.

  14. Dehghan M. Numerical solution of three-dimensional advection-diffusion equation. Appl. Math. Comput. 150. 2004. Pp 5–19.

  15. Djordjevich A., Savovic S. Solute transport with longitudinal and transverse diffusion in temporally and spatially dependent flow from a pulse type source. // International Journal of Heat and Mass Transfer. Vol. 65. 2013. Pp. 321-326.

  16. El-Sayed A.M.A., Behiry S.H., Raslan W.E. Adomian’s decomposition method for solving an intermediate advection-dispersion equation // Comput. Math. Appl. 59. 2010. Pp 1759–1765.

  17. Fomin S., Chugunov V. and Hashida T. Application of Fractional Differential Equations for Modeling the Anomalous Diffusion of Contaminant from Fracture into Porous Rock Matrix with Bordering Alteration Zone // Transport in Porous Media. 81, 2010.187–205.
  18. Fomin S., Chugunov V. and Hashida T. The effect of non-Fickian diffusion into surrounding rocks on contaminant transport in fractured porous aquifer // Proceedings of Royal Society A 461, 2923–2939, 2005.


  19. Fomin S.A., Chugunov V.A., Hashida T. Mathematical modeling of anomalous diffusion in porous media // Fractional Differensial Calculus.V.1. №1. 2011. Pp. 1-28.

  20. Gamerdinger A.P., Wagenet R.J., Van Genuchten M.Th. Application of Two-Site/Two-Region Models for Studying Simultaneous Nonequilibrium Transport and Degradation of Pesticides // Soil Sci. Soc. Am. J, Vol. 54, 1990. 957-963 p.

  21. Gao G., Feng S., Zhan H., Huang G., and Mao X. Evaluation of anomalous solute transport in a large heterogeneous soil column with mobile-immobile model // J. Hydrol. Eng., 14(9), 2009. 966–974 p.

  22. Gaudet J.P., Jegat H., Vachaud G., Wierenga P. Solute transfer with exchange between mobile and stagnant water through unsaturated sand // Soil Sci. Soc. Am. J., 41, 665-671, 1977.

  23. Grisak G.E., Pickens J.F. Solute transport through fractured media. 1. The effect of matrix diffusion // Water Resour. Res. 16 (4). 1980a. Pp. 719-730.

  24. Haggerty R., Fleming S.W., Meigs L.C., McKenna S.A. Tracer tests in a fractured dolomite: 2. Analysis of mass transfer in single-well injection with drawal tests // Water Resour. Res., 37(5), 1129–1142, 2001.

  25. Haggerty R., Harvey C.F., Von Schwerin C.F., Meigs L.C. What controls the apparent timescale of solute mass transfer in aquifers and soils? A comparison of experimental results // Water Resour. Res. Vol. 40. 2004. W01510, doi:10.1029/2002WR001716.

  26. Haggerty R., McKenna S.A., Meigs L.C. On the late-time behavior of tracer test breakthrough curves // Water Resour. Res., 36(12), 3467– 3479, 2000.

  27. Haggerty R., Wondzell S.M., Johnson M.A. Power-law residence time distribution in the hyporheic zone of a 2nd-order mountain stream // Geophys. Res. Lett., 29(13), 1640, doi:10.1029/2002GL014743, 2002.

  28. Haws N.W., Paraskewich M.R. Jr., Hilpert M., Ball W.P., Effect of fluid velocity on model-estimated rates of radial solute diffusion in a cylindrical macropore column // Water Resources Research, VOL. 43, W10409, doi:10.1029/2006WR005751, 2007.

  29. Huang F., Liu F. The fundamental solution of the space-time fractional advection-dispersion // J. Appl. Math. Comput. 18. 2005. Pp 339–350.

  30. Huang G., Huang Q. and Zhan H. Evidence of one-dimensional scale-dependent fractional advection dispersion // Journal of Contaminant Hydrology, 85. 2006. Pp. 53–71.

  31. Huang K., Toride, N., van Genuchten M.Th. Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns // Transport Porous Med., 18(3), 1995.283–302 p.

  32. Khan F.U., Shamsul Q. Two-Dimensional Model for Reactive-Sorption Columns of Cylindrical Geometry: Analytical Solutions and Moment Analysis // Journal of Chromatographic Science. Vol. 55. No. 5. 2017. Pp. 536–549.

  33. Khuzhayorov B., Makhmudov J., Sulaymonov F. Solute transport with adsorption in cylindrical heterogeneous media // International Journal of Advanced Research in Science, Engineering and Technology. - India, 2018. Vol. 5, Issue 9. - P.6934-6943. (05.00.00; №8)

  34. Khuzhayorov B., Usmonov A., Nik Long N.M.A., Fayziev B. Anomalous solute transport in a cylindrical two-zone medium with fractal structure // Applied Sciences (Switzerland), 2020. 10(15), 5349. DOI:10.3390/app10155349

  35. Khuzhayorov В.Kh., Makhmudov J.M., Usmonov A.I. a problem of solute transport in a cylindrical porous media with a fractal structure taking into account nonequilibrium adsorption phenomena // International Journal of Advanced Research in Science, Engineering and Technology. Vol. 6, Issue 12 , December 2019. Pp. 12047-12054.

  36. Kilbas A.A., Srivastava H.M. and Trujillo J.J. Theory and Applications of Fractional Differential equations.Elsevier. 2006.

  37. Liu F., Anh V.V., Turner I., Zhuang P. Time fractional advection-dispersion equation // J. Appl. Math. Comput. 13. 2003. Pp 233–245.

  38. Liu F., Zhuang P., Anh V., Turner I., Burrage K. Stability and convergence of the difference methods for the space-time fractional advection diffusion equation // Appl. Math. Comput. 191. 2007. Pp 12–20.

  39. Lu X. Z. Finite difference method for time fractional advection-dispersion equation // Journal of Fuzhou University (Natural Science Edition). 32(4). 2004. Pp. 423-426.

  40. Lu X. Z., Liu F. W. Time fractional Diffusion-Reaction equation // Numerical Mathematics. A. Journal of Chinese Universities. 27(3). 2005. Pp. 267−273.

  41. Maraqa M. A., Wallace R.B., Voice T.C. Effects of residence time and degree of water saturation on sorption nonequilibrium parameters // J. Contam. Hydrol., Vol. 36. 1999. Pp. 53 – 72.

  42. Massabo M., Roberto C., Ombretta P. Some analytical solutions for two-dimensional convectione dispersion equation in cylindrical geometry // Environmental Modelling & Software. Vol. 21. 2006. Pp.681-688.

  43. Meerschaert M.M., Tadjeran Ch. Finite difference approximations for two-sided space-fractional partial differential equations // Applied Numerical Mathematics 56. 2006. Pp 80–90.

  44. Metzler R., Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics // J. Phys. A, 37, 2004, pp. 161-208.

  45. Yüklə 1,82 Mb.

    Dostları ilə paylaş:
1   ...   9   10   11   12   13   14   15   16   17




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin