Oxford university press how the br ain evolved language



Yüklə 2,9 Mb.
Pdf görüntüsü
səhifə18/18
tarix06.06.2020
ölçüsü2,9 Mb.
#31814
1   ...   10   11   12   13   14   15   16   17   18
how the brain evolved language

Neural Networks 7 (6/7): 883–94. 
Grossberg, S., and Stone, G. 1986. Neural dynamics of word recognition and recall: 
attentional priming, learning, and resonance. Psychological Review 93 (1): 46–74. 
Gruber, J. S. [1965]1976. Lexical structures in syntax and semantics. The Hague: Mouton. 
Halle, M., Hughes, G. W., and Radley, J.-P. A. 1957. Acoustic properties of stop conso­
nants. Journal of the Acoustic Society of America 29: 107–16. 
Hamburger, H., and Wexler, K. 1975. A mathematical theory of learning transforma­
tional grammar. Journal of Mathematical Psychology 12: 137–77. 
Hamburger, V. 1975. Cell death in the development of the lateral motor column of 
the chick embryo. Journal of Comparative Neurology 160: 535–46. 
Harrison, J. M., and Howe, M. E. 1974. Anatomy of the afferent auditory nervous sys­
tem of mammals. In W. D. Keidel and W. D. Neff, eds., Auditory system anatomy 
and physiology. Berlin: Springer-Verlag. 
Hartline, H. K. 1949. Inhibition of activity of visual receptors by illuminating nearby 
retinal elements in the Limulus eye. Federal Proceedings 8: 69–84. 
Hartline, H. K., and Graham, C. H. 1932. Nerve impulses from single receptors in the 
eye. Journal of Cellular and Comparative Physiology 1: 277–95. 
Hartline, H. K., and Ratliff, F. 1954. Spatial summation of inhibitory influences in the 
eye of LimulusScience 120: 781. 
Hattori, T., and Suga, N. 1997. The inferior colliculus of the mustached bat has the fre-
quency-vs.-latency coordinates. Journal of Comparative Physiology, A, 180 (3): 271–84. 
Hebb, D. O. 1949. The organization of behavior. New York: Wiley. 
Heraclitus. 1987. Fragments. Trans. T. M. Robinson. Toronto: University of Toronto Press. 
Hinton, G. E. 1977. “Relaxation and its role in vision.” Doctoral diss., University of 
Edinburgh. 
Holmes, G. 1939. The cerebellum of man. Brain 62: 1–30. 
Holmes, J. A., and Singer, H. 1966. Speed and power of reading in high school. Washing­
ton: U.S. Department of Health, Education, and Welfare, Office of Education. 
Hopfield, J. J. 1982. Neural networks and physical systems with emergent collective 
computational abilities. Proceedings of the National Academy of Sciences (USA)  79
2554–58. 
Hubel, D. H., and Livingstone, M. S. 1987. Segregation of form, color, and stereopsis 
in primate area 18. Journal of Neuroscience 7: 3378–415. 
Hubel, D. H., and Wiesel, T. N. 1977. Functional architecture of macaque monkey 
visual cortex. Proceedings of the Royal Society of London B, 198: 1–59. 
Hurst, J. A., Baraitser, M., Auger, E., Graham, F., and Norell, S. 1990. An extended 
family with an inherited speech disorder. Developmental Medicine and Child Neurol-
ogy 32: 347–55. 
Isaacson, R. L., and Pribram, K., eds. 1975–86. The hippocampus. 4 vols. New York: Plenum. 
Ivry, R. B., and Keele, S. W. 1989. Timing functions of the cerebellum. Journal of Cog-
nitive Neuroscience 1: 136–52. 
Jackendoff, R. 1994. Patterns in the mind. New York: Basic Books. 
Jaeger, J. J., Lockwood, A. H., Kemmerer, D. L., Van-Valin, R. D., Murphy, B. W., and 
Khalak, H. G. 1996. A positron emission tomographic study of regular and irregu­
lar verb morphology in English. Language 72 (3): 451–97. 
Jakobson, R. 1968. Child language, aphasia, and phonological universals. The Hague: 
Mouton. 

REFERENCES 
•  209 
Jones, E. G. 1981. Anatomy of cerebral cortex: columnar input-output relations. In 
F. O. Schmidt, F. G. Worden, G. Adelman, and S. G. Dennis, eds., The cerebral cor-
tex. Cambridge: MIT Press. 
Joseph, R. 1993. The naked neuron: evolution and the languages of the body and brain. New 
York: Plenum Press. 
Jusczyk, P., and Hohne, E. A. 1997. Infants’ memory for spoken words. Science 277
1984–86. 
Kandel, E. R., and Hawkins, R. D. 1992. The biological basis of learning and individu­
ality. Scientific American 267 (3): 78–87. 
Kasamatsu, T. 1983. Neuronal plasticity by the central norepinephrine system in the 
cat visual cortex. Progress in Psychobiology and Physiological Psychology 10: 1–112. 
Kasamatsu, T., Pettigrew, J., and Ary, M. 1979. Restoration of visual cortical plasticity 
by local microperfusion of norepinephrine. Journal of Comparative Neurology 184
163–82. 
Kelly, J. P. 1985. Auditory system. In E. R. Kandel and J. H. Schwartz, eds., Principles of 
neural science, 2d ed. New York: Elsevier. 
Kent, R. D., Netsell, R., and Abbs, J. H. 1979. Acoustic characteristics of dysarthria 
associated with cerebellar disease. Journal of Speech and Hearing Research 22: 627– 
48. 
Kim, K. H. S., Relkin, N. R., Lee, K-M, and Hirsch, J. 1997. Distinct cortical areas asso­
ciated with native and second languages. Nature 388: 171–74. 
Kimura, D. 1967. Functional asymmetry of the brain in dichotic listening. Cortex 3
163–178. 
———. 1988. Reveiw of What the hands reveal about the brain. Language and Speech 31 
(4): 375–78. 
Kirkwood, J. R. 1995. Essentials of neuroimaging. New York: Churchill Livingstone. 
Klein, D., Zatorre, R. J., Milner, B., Meyer, E., and Evans, A. C. 1994. Left putaminal 
activation when speaking a second language: evidence from PET. Neuroreport 5 
(17): 2295–97. 
Klein, M., and Kandel, E. R. 1978. Presynaptic modulation of voltage-dependent Ca
++ 
current: mechanism for behavioral sensitization. Proceedings of the National Acad-
emy of Sciences (USA) 75: 3512–16. 
———. 1980. Mechanism of calcium current modulation underlying presynaptic fa­
cilitation and behavioral sensitization in AplysiaProceedings of the National Acad-
emy of Sciences (USA) 77: 6912–16. 
Klima, E. S., and Bellugi, U. 1979. The signs of language. Cambridge: Harvard Univer­
sity Press. 
Krashen, S. 1982. Principles and practice of second language acquisition. New York: Pergamon. 
Kripkee, B., Lynn, R., Madsen, J. A., and Gay, P. E. 1982. Familial learning disability, 
easy fatigue, and maladroitness: preliminary trial of monosodium glutamate in 
adults. Developmental Medicine and Child Neurology 24: 745–51. 
Kuhl, P. K. 1983. Perception of auditory equivalence classes for speech in early infancy. 
Infant Behavior and Development 6 (3): 263–85. 
———. 1991. Human adults and human infants show a “perceptual magnet effect” 
for the prototypes of speech categories, monkeys do not. Perception and Psychophysics 
50 (2): 93–107. 
Kuhl, P. K., and Miller, J. D. 1975. Speech perception by the chinchilla: voiced-voice-
less distinction in alveolar plosive consonants. Science 190: 69–72. 
Kuhn, T. S. 1957. The Copernican revolution: planetary astronomy in the development of Western 
thought. Cambridge: Harvard University Press. 

210  • 
REFERENCES 
———. 1962. The structure of scientific revolutions. Chicago: University of Chicago Press. 
Lahey, M., Liebergott, J., Chesnick, M., Menyuk, P., and Adams, J. 1992. Variability in 
children’s use of grammatical morphemes. Applied Psycholinguistics 13: 373–98. 
Lashley, K. S. 1950. In search of the engram. In Society of Experimental Biology Sympo-
sium no. 4: Psychological mechanisms in animal behaviour. London: Cambridge Uni­
versity Press. 
———. 1951. The problem of serial order in behavior. In L. A. Jeffress, ed., Cerebral 
mechanisms in behavior. New York: Wiley. 
Leckman, J. F., Peterson, B. S., Anderson, G. M., Arnsten, A. F. T., Pauls, D. L., and 
Cohen, D. J. 1997. Pathogenesis of Tourette’s syndrome. Journal of Child Psychol-
ogy and Psychiatry 38 (1): 119–42. 
Lehmann, W. P. 1978. Conclusion: toward an understanding of the profound unity 
underlying languages. In W. P. Lehmann, ed., Syntactic typology: studies in the phe-
nomenology of language. Austin: University of Texas Press. 
Lenneberg, E. H. 1967. Biological foundations of language. New York: Wiley. 
Leonard, L. B. 1996. Characterizing specific language impairment: a crosslinguistic 
perspective. In M. L. Rice, ed, Toward a genetics of language. Mahwah, NJ: Lawrence 
Erlbaum. 
LeVay, S., Connolly, M., Houde, J., and Van Essen, D. C. 1985. The complete pattern 
of ocular dominance stripes in the striate cortex and visual field of the macaque 
monkey. Journal of Neuroscience 5: 486–501. 
LeVay, S., Wiesel, T. N., and Hubel, D. H. 1980. The development of ocular dominance 
columns in normal and visually deprived monkeys. Journal of Comparative Neurol-
ogy 191: 1–51. 
Li, C. N., ed. 1976. Subject and topic. New York: Academic Press. 
Li, C. N., and Thompson, S. A. 1981. Mandarin Chinese: a functional reference gram­
mar. Berkeley: University of California Press. 
Liberman, A. M., DeLattre, P. C., and Cooper, F. S. 1952. The role of selected stimulus 
variables in the perception of unvoiced stop consonants. American Journal of Psy-
chology 65: 497–516. 
Liberman, A. M., Harris, K. S., Hoffman, H. S., and Griffith, B. L. 1957. The discrimi­
nation of speech events within and across phoneme boundaries. Journal of Experi-
mental Psychology 54: 358–68. 
Liberman, M. 1979. The intonational system of English. New York: Garland. 
Lichtheim, L. 1885. On aphasia. Brain 7: 443. 
Lieberman, P. 1968. Primate vocalizations and human linguistic ability. Journal of the 
Acoustical Society of America 44: 1574–84. 
———. 1975. On the origins of language: an introduction to the evolution of human speech. 
New York: Macmillan. 
———. 1984. The biology and evolution of language. Cambridge: Harvard University Press. 
———. 1991. Uniquely human: the evolution of speech, thought, and selfless behavior. Cam­
bridge: Harvard University Press. 
Lima, S. D., Corrigan, R. L., and Iverson, G. K., eds. 1994. The reality of linguistic rules. 
Amsterdam: John Benjamins. 
Lisker, L., and Abramson, A. S. 1964. A cross-language study of voicing in initial stops: 
acoustical measurements. Word 20 (3): 384–422. 
Livingstone, M. S., and Hubel, D. H. 1984. Anatomy and physiology of a color system 
in the primate visual cortex. Journal of Neuroscience 4: 2830–35. 
———. 1987. Psychophysical evidence for separate channels for the perception of 
form, color, movement, and depth. Journal of Neuroscience 7: 3416–68. 

REFERENCES 
•  211 
Llinás, R. R., and Hillman, D. E. 1969. Physiological and morphological organization 
of the cerebellar circuits in various vertebrates. R. R. In Llinás, ed., Neurobiology of 
cerebellar evolution and development. Chicago: American Medical Association. 
Long, M. H. 1990. Maturational constraints on language development. Studies in Sec-
ond Language Acquisition 12: 251–74. 
Lorento de Nó, R. 1943. Cerebral cortex: architecture, intracortical connections, motor 
projections. In J. F. Fulton, ed., Physiology of the nervous system. New York: Oxford 
University Press. 
Loritz, D. 1990. Linguistic hypothesis testing in neural networks. In Proceedings of the 
Georgetown University Round Table on Languages and Linguistics. Washington: Georgetown 
University Press. 
———. 1991. Cerebral and cerebellar models of language learning. Applied Linguis-
tics 12 (3): 299–318. 
Lund, J. S., Boothe, R. G., and Lund, R. D. 1977. Development of neurons in the vi­
sual cortex (area 17) of the monkey (Macaca nemestrina): a Golgi study from fetal 
day 27 to postnatal maturity. Journal of Comparative Neurology 176 (2): 149–88. 
Lynch, G. 1986. Synapses, circuits, and the beginnings of memory. Cambridge: MIT Press. 
Machon, R. A., Mednick, S. A., and Huttunen, M. O. 1997. Adult major affective dis­
order after prenatal exposure to an influenza epidemic. Archives of General Psy-
chiatry 54 (4): 322–28. 
MacWhinney, B. 1987a. The competition model. In MacWhinney, 1987b. 
———, ed. 1987b. Mechanisms of language acquisition. Hillsdale, NJ: Lawrence Erlbaum. 
MacWhinney, B., and Leinbach, A. J. 1991. Implementations are not conceptuali­
zations: revising the verb learning model. Cognition 29: 121–57. 
Madison, D. V., and Nicoll, R. A. 1986. Actions of noradrenaline recorded intracellu­
larly in rat hippocampal CA1 pyramidal neurones, in vitroJournal of Physiology 
(London) 372: 221–44. 
Mandelbrot, B. 1982. The fractal geometry of nature. San Francisco: W. H. Freeman and Co. 
Manter, J. T. 1975. Manter and Gatz’s essentials of clinical neuroanatomy and neurophysiol-
ogy. 5th ed. (R. G. Clark). Philadelphia: F. A. Davis. 
Martin, R. D. 1982. Allometric approaches to the evolution of the primate nervous 
system. In E. Armstrong and D. Falk, eds., Primate brain evolution. New York: Ple­
num Press. 
McClelland, J. L., and Rumelhart, D. E., eds. 1986. Parallel distributed processing. Vol. 2. 
Cambridge: MIT Press. 
McCollough, C. 1965. Color adaptation of edge-detectors in the human visual system. 
Science 149: 1115–16. 
McCulloch, W. S., and Pitts, W. 1943. A logical calculus of the ideas immanent in ner­
vous activity. Bulletin of Mathematical Biophysics 5: 115–33. 
McGlade-McCulloh, E., Yamamoto, H., Tan, S.-E., Brickey, D. A., and Soderling, 
T. R. 1993. Phosphorylation and regulation of glutamate receptors by calcium/ 
calmodulin-dependent protein kinase II. Nature 362: 640. 
McLuhan, M. 1965. The Gutenberg galaxy: the making of typographic man. Buffalo: Uni­
versity of Toronto Press. 
McNeill, D. 1966. Developmental psycholinguistics. In F. Smith and G. Miller, eds., 
The genesis of language. Cambridge: MIT Press. 
Mednick, S. A. 1994. Prenatal influenza infections and adult schizophrenia. Schizophre-
nia Bulletin 20 (2): 263–67. 
Menn, L., and Obler, L. 1990. Agrammatic aphasia: a crosslanguage narrative sourcebook. 
Amsterdam: John Benjamins. 

212  • 
REFERENCES 
Menyuk, P. 1977. Language and maturation. Cambridge: MIT Press. 
———. 1988. Language development: knowledge and use. Boston: Scott, Foresman/Little, 
Brown. 
Merzenich, M. M., Jenkins, W. M., Johnston, P., Schreiner, C., Miller, S. L., and Tallal, 
P. 1996. Temporal processing deficits of language-learning impaired children 
ameliorated by training. Science 271: 77–81. 
Metter, E. J., Riege, W. H., Hanson, W. R., Camras, L. R., Phelps, M. E., and Kuhl, 
D. E. 1983. Correlations of glucose metabolism and structural damage to language
function in aphasia. Brain and Language 21 (2): 187–207. 
Miller, G. A. 1956. The magic number seven, plus or minus two. Psychological Review 
63: 81–97.
Miller, G. A., and Gildea, P. M. 1987. How children learn words. Scientific American 257 
(9): 94–99. 
Milner, B. 1966. Amnesia following operation on the temporal lobes. In C. W. M. Whitty 
and O. Zangwill, eds., Amnesia. London: Butterworth. 
Milner, B., Corkin, S., and Teuber, H.-L. 1968. Further analysis of the hippocampal 
amnesic syndrome: 14-year follow-up study of H. M. Neuropsychologia 6: 215–34. 
Minsky, M., and Papert, S. 1967. Perceptrons and pattern recognition. Artificial Intel­
ligence Memo no. 140. MAC-M-358. Project MAC. Cambridge, MA. Sept. 
———. 1969. Perceptrons. Cambridge: MIT Press. 
Montemurro, D. G., and Bruni, J. E. 1988. The human brain in dissection. New York: 
Oxford University Press. 
Morton, J. 1969. Interaction of information in word recognition. Psychological Review 
76: 165–78.
———. 1979. Word recognition. In Morton and Marshall, 1979. 
Morton, J., and Marshall, J. C. 1979. Psycholinguistics Series II. London: Elek Scientific 
Books. 
Mountcastle, V. B. 1957. Modality and topographic properties of single neurons of cat’s 
somatic sensory cortex. Journal of Neurophysiology 20: 408–34. 
Nelson, K. E., and van Kleeck, A. 1987. Children’s language. Hillsdale, NJ: Lawrence 
Erlbaum. 
Neville, H., and Bavelier, D. 1996. L’extension des aires visuelles chez les sourds: les 
cortex visuel et auditif ne sont pas aussi distincts qu’on le croit. Recherche 289: 90– 
93. 
Nicolson, R. I., Fawcett, A. J., and Dean, P. 1995. Proceedings of the Royal Society, B: Bio-
logical Sciences 259 (1354): 43–47. 
Nietzsche, F. W. (1924 [1833]. Jenseits von Gut und Böse: Vorspiel einer Philosophie der 
Zukunft. Leipzig: A. Kröner. 
Nigrin, A. 1993. Neural networks for pattern recognition. Cambridge: MIT Press. 
Ohlemiller, K. K., Kanwal, J. S., and Suga, N. 1996. Facilitative responses to species-
specific calls in cortical FM-FM neurons of the mustached bat. Neuroreport 7 (11): 
1749–55. 
Olson, D. R. 1991. Literacy and orality. Cambridge: Cambridge University Press. 
Ong, W. 1982. Orality and literacy: the technologizing of the word. London: Methuen. 
Orgel, L. E. 1979. Selection in vitro. Proceedings of the Royal Society of London, B, 205
435–42. 
Parnas, D. 1972. On the criteria to be used in decomposing systems into modules. 
Communications of the Association for Computing Machinery 15 (12): 1053–58. 
Patterson, F. 1978. Conversations with a gorilla. National Geographic 154: 438–65. 
Peirce, C. S. 1877. The fixation of belief. Popular Science Monthly 12: 1–15. 

REFERENCES 
•  213 
———. 1878. How to make our ideas clear. Popular Science Monthly 13 (Jan.): 286– 
302. 
———. 1905. What pragmatism is. The Monist 15 (Apr.): 161–81. Reprinted in Wiener 
1958. 
Penfield, W., and Rasmussen, T. 1950. The cerebral cortex of man. New York: Macmillan. 
Penfield, W., and Roberts, L. 1959. Speech and brain mechanisms. Princeton: Princeton 
University Press. 
Peters, A., and Jones, E. G. 1984. Cerebral cortex. Vol. 1, Cellular components of the cerebral 
cortex. New York: Plenum. 
Peterson, G. E., and Barney, H. L. 1952. Control methods used in a study of the vow­
els. Journal of the Acoustical Society of America 24: 175–84. 
Piaget, J. 1975. L’équilibration des structures cognitives: problème central du développment. Paris: 
Presses universitaires de France. 
Pierrehumbert, J. 1987. The phonology and phonetics of English intonation. Bloomington: 
Indiana University Linguistics Club. 
Pierson, M., and Snyder-Keller, A. 1994. Development of frequency-selective domains 
in inferior colliculus of normal and neonatally noise-exposed rats. Brain Research 
636: 55–67. 
Pinker, S. 1984. Language learnability and language learning. Cambridge: Harvard Uni­
versity Press. 
———. 1989. Learnability and cognition: the acquisition of argument structure. Cambridge: 
MIT Press. 
———. 1994. The language instinct. New York: Morrow. 
Pinker, S., and Bloom, P. 1990. Natural language and natural selection. Behavioral and 
brain sciences 13: 707–84. 
Pinker, S., and Prince, A. 1988. On language and connectionism: an analysis of a dis­
tributed processing model of language acquisition. Cognition 28: 73–194. 
———. 1994. Regular and irregular morphology and the psychological status of rules 
of grammar. In Lima, Corrigan, and Iverson, 1994. 
Plunkett, K. 1995. Connectionist approaches to language acquisition. In P. Fletcher 
and B. MacWhinney, eds., The Handbook of Child Language. Oxford: Blackwell. 
Poizner, H., Klima, E. S., and Bellugi, U. 1987. What the hands reveal about the brain. 
Cambridge: MIT Press. 
Poritsky, R. 1969. Two and three dimensional ultrastructure of boutons and glial cells 
in the motoneuronal surface of the cat spinal cord. Journal of Comparative Neurol-
ogy 135: 423. 
Premack, D. 1985. “Gavagai!” or the future history of the animal language controversy. 
Cognition 19: 207–96. 
Pylyshyn, Z. 1979. Complexity and the study of artificial and human intelligence. In 
M. Ringle, ed., Philosophical perspectives in artificial intelligence. Atlantic Highlands, 
NJ: Humanities Press. 
Quillian, M. R. 1968. Semantic memory. In M. Minsky, ed., Semantic information process-
ing. Cambridge: MIT Press. 
Ramón y Cajal, S. 1911. Histologie du système nerveux de l’homme et des vertébrés. Paris: 
Maloine. 
———. 1955. Histologie du système nerveux. Madrid: Consejo Superior de Investigationes 
Cientificas, Instituto Ramón y Cajal. 
Ratliff, F. 1965. Mach bands. San Francisco: Holden-Day. 
Ratner, N. B. 1993. Interactive influences on phonological behavior: a case-study. Jour-
nal of Child Language 20: 191–97. 

214  • 
REFERENCES 
Rauschecker, J. P., Tian, B., and Hauser, M. 1995. Processing of complex sounds in 
the macaque nonprimary auditory cortex. Science 268: 111–14. 
Raymond, J. E., Ogden, N. A., Fagan, J. E., and Kaplan, B. J. 1988. Fixational instabil­
ity and saccadic eye movements of dyslexic children with subtle cerebellar dys­
function. American Journal of Optometry and Physiological Optics 65 (3): 174–81. 
Reilly, J. S., Klima, E. S., and Bellugi, U. 1991. Once more with feeling: affect and lan­
guage in atypical populations. Developmental Psychopathology 2: 367–91. 
Rice, M.  L., ed. 1996. Toward a genetics of language. Mahwah, NJ: Lawrence Erlbaum. 
Rice, M. L., and Wexler, K. 1996. Toward tense as a clinical marker of specific language 
impairment in English-speaking children. Journal of Speech and Hearing Research 
39: 1239–57.
Rochet, B. L. 1991. Perception ot the high vowel continuum: a crosslanguage study. 
Paper presented at the International Congress on Phonetic Sciences, Aix-en-
Provence. 
Roe, A. W., Pallas, S. L., Hahm, J.-O. and Sur, M. 1990. A map of visual space induced 
in primary auditory cortex. Science 250: 818–20. 
Rose, W. J. 1993. “Computational adaptation, real-time organization and language 
learning (CAROLL).” Ph.D. diss. Georgetown University. 
Rosenblatt, F. 1958. The perceptron: a probabilistic model for information storage 
and organization in the brain. Psychological Review 65: 386–408. 
———. 1959. Two theorems of statistical separability in the perceptron. In Mechanisation 
of thought processes, vol. 1. Proceedings of a Symposium Held at the National Phys­
ics Laboratory, 1958. London: H. M. Stationery Office. 
———. 1961. Principles of neurodynamics: perceptrons and the theory of brain mechanisms
Washington: Spartan Books. 
Ross, C. 1978. The rightmost principle of sentence negation. In Papers from the Four-
teenth Regular Meeting of the Chicago Linguistics Society. Chicago: Chicago Linguis­
tics Society. 
Roszak, T. 1986. The cult of information: the folklore of computers and the true art of thinking
New York: Pantheon. 
Rumelhart, D., Hinton, G., and Williams, R.. 1986. Learning internal representations 
by error propagation. In Rumelhart and McClelland 1986b. 
Rumelhart, D. E., and McClelland, J. L., eds. 1986a. On learning the past tenses of 
English verbs. In McClelland and Rumelhart 1986. 
———, eds. 1986b. Parallel distributed processing. Vol. 1. Cambridge: MIT Press. 
Sachs, J., Bard, B., and Johnson, M. L. 1981. Language learning with restricted input: case 
studies of two hearing children of deaf parents. Applied Psycholinguistics 2 (1): 33–54. 
Sadler, L. S., Robinson, L. K., Verdaasdonk, K. R., and Gingell, R. 1994. The Williams 
syndrome: evidence for possible autosomal dominant inheritance. American Jour-
nal of Medical Genetics 47: 468–70. 
Sawusch, J. R., and Nusbaum, H. C. 1979. Contextual effects in vowel perception. I: 
Anchor-induced contrast effects. Perception and Psychophysics 27: 421–34. 
Sawusch, J. R., Nusbaum, H. C., and Schwab, E. C. 1980. Contextual effects in vowel 
perception. II: Evidence for two processing mechanisms. Perception and Psychophys-
ics 27: 421–34. 
Schmidt, F. O., Worden, F. G., Adelman G., and Dennis, S. G., eds. 1981. The cerebral 
cortex. Cambridge: MIT Press. 
Schmidt, R. 1993. Awareness and second language acquisition. Annual Review of Ap-
plied Linguistics 13: 206–26. 

REFERENCES 
•  215 
———. 1994. Implicit learning and the cognitive unconscious: of artificial grammars 
and SLA. In N. Ellis, ed., Implicit and explicit learning of languages. New York: Aca­
demic Press. 
Schoenle, P. W., and Groene, B. 1993. Cerebellar dysarthria. In Blanken,  Dittmann, 
Grimm, Marshall, and Wallesch, 1993. 
Schwab, E. C., and Nusbaum, H. C., eds. 1986. Pattern recognition by humans and 
machines. Vol. 1, Speech perception. Orlando: Academic Press. 
Selinker, L. 1972. Interlanguage. International Review of Applied Linguistics 10: 209–31. 
Selkirk, E. 1984. Phonology and syntax: the relation between sound and structure. Cambridge: 
MIT Press. 
Shepherd, G. M., ed. 1997. The synaptic organization of the brain. Fourth edition. New 
York: Oxford University Press. 
Sherrington, C. S. [1906] 1961. The integrative action of the nervous system. New Haven: 
Yale University Press. 
Simon, H. A., and Feigenbaum, E. A. 1979. A theory of the serial position effect. In 
H. A. Simon, ed., Models of thought. New Haven: Yale University Press. 
Skinner, B. F. 1957. Verbal behavior. New York: Appleton-Century-Crofts. 
———. 1971. Beyond freedom and dignity. New York: Knopf. 
Skrede, K. K., and Malthe-Sorenssen, D. 1981. Increased resting and evoked release of 
transmitter following repetitive electrical tetanization in hippocampus: a biochemi­
cal correlate to long-lasting synaptic potentiation. Brain Research 708: 436–41. 
Slobin, D. I. 1973. Cognitive prerequisites for the development of grammar. In Ferguson 
and Slobin 1973. 
Small, S. L., Cottrell, G. W., and Tanenhaus, M. K. 1988. Lexical ambiguity resolution: 
perspectives from psycholinguistics, neuropsychology, and artificial intelligence. Los Altos: 
Morgan Kaufmann Publishers. 
Snyder, S. H., and Bredt, D. S. 1992. Biological roles of nitric oxide. Scientific American 
267 (5): 68–71. 
Spencer, H. [1862] 1912. First principles. New York: D. Appleton and Co. 
Sperry, R. W. 1964. The great cerebral commissure. Scientific American 210: 42–52. 
———. 1970a. Cerebral dominance in perception. In F. A. Young and D. B. Lindsley, 
eds., Early experience in visual information processing in perceptual and reading disor-
ders. Washington: National Academy of Science. 
———. 1970b. Perception in the absence of the neocortical commissures. In Percep-
tion and its disorders. Research Publication 48. Chicago: Association for Research 
in Nervous and Mental Disease. 
———. 1967. Some effects of disconnecting the cerebral hemispheres. In C. Millikan 
and F. Darley, eds., Brain mechanisms underlying speech and language. New York: 
Grune and Stratton. 
Starbuck, V. N. 1993. “The N400 in recovery from aphasia.” Ph.D. diss. Washington: 
Georgetown University. 
Stevens, K. N. 1972. The quantal nature of speech: evidence from articulatory-acoustic 
data. In E. E. David, Jr., and P. B. Denes, eds., Human communication: a unified view. 
New York: McGraw-Hill. 
Suga, N. 1990. Biosonar and neural computation in bats. Scientific American 262 ( June): 
60–68. 
Suga, N., Zhang, Y., and Yan, J. 1997. Sharpening of frequency tuning by inhibition in 
the thalamic auditory nucleus of the mustached bat. Journal of Neurophysiology 77 
(4): 2098–114. 

216  • 
REFERENCES 
Swinney, D. A. 1982. The structure and time-course of information interaction dur­
ing speech comprehension: lexical segmentation, access, and interpretation. In 
J. Mehler, E. C. T. Walker, and M. Garrett, eds., Perspectives on mental representation
Hillsdale, NJ: Lawrence Erlbaum. 
Szentágothai, J. 1969. Architecture of the cerebral cortex. In H. H. Jasper, A. Ward, 
and A. Pope, eds., Basic mechanisms of the epilepsies. Boston: Little, Brown. 
Tallal, P., Miller, S. L., Bedi, G., Byma, G., Wang, X., Nagarajan, S. S., Schreiner, C., 
Jenkins, W. M., and Merzenich, M. 1996. Language comprehension in language-
learning impaired children improved with acoustically modified speech. Science 
271: 81–84. 
Tallal, P., and Piercy, M. 1973a. Defects of non-verbal auditory perception in children 
with developmental aphasia. Nature 241: 468–69. 
———. 1973b. Developmental aphasia: impaired rate of non-verbal processing as a 
function of sensory modality. Neuropsychologia 11 (4): 389–98. 
Tannen, D. 1982. Spoken and written language: exploring orality and literacy. Norwood, NJ: 
ABLEX. 
Tesniere, L. [1959] 1969. Elements de syntaxe structurale. 2d ed. Paris: Klincksieck. 
Thoenen, Hans. 1995. Neurotrophins and neuronal plasticity. Science 270: 593–98. 
Tolman, E. C. 1932. Purposive behavior in animals and men. New York: Century Co. 
Turing, A. 1936. On computable numbers with an application to the entscheidung­
problem. Proceedings of the London Mathematics Society 42: 230–65. 
Ullman, M., Corkin, S., Coppola, M., Hickok, G., Growdon, J. H., Koroshetz, W. J., and 
Pinker, S. 1997. A neural dissociation within language: evidence that the mental 
dictionary is part of declarative memory, and that grammatical rules are processed 
by the procedural system. Journal of Cognitive Neuroscience 9 (2): 289–99. 
Ullman, M., and Gopnik, M. 1994. The production of inflectional morphology in he­
reditary specific language impairment. McGill Working Papers in Linguistics 10 (1– 
2): 81–118. 
Vellutino, F. 1987. Dyslexia. Scientific American 256 (3): 34–41. 
von Baer, K. E. 1828. Über die Entwicklungsgeschichte der Thiere; Beobachtung und Reflexion
Königsberg: Barntiäger. 
von der Malsburg, C. 1973. Self-organization of orientation sensitive cells in the stri­
ate cortex. Kybernetik 14: 85–100. 
Von Neumann, J. 1958. The computer and the brain. New Haven: Yale University Press. 
Wang, P. P., and Bellugi, U. 1993. Williams syndrome, Down syndrome, and cognitive 
neuroscience. American Journal of Diseases of Children 147: 1246–51. 
Watson, J. D., and Crick, F. H. C. 1953. A structure for deoxyribose nucleic acid. Na-
ture 171: 737. 
Welker, E., Armstrong-James, M., Bronchti, G., Ourednik, W., Gheorghita-Baechler, F., 
Duybois, R., Guernsey, D. L., van der Loos, H., and Neumann, P. E. 1996. Altered 
sensor processing in the somatosensory cortex of the mouse mutant barrelless. Sci-
ence 271: 1864–67. 
Wernicke, C. 1874. Der aphasische Symptomencomplex. Breslau: Cohn und Weigert. 
West, J. R, Hodges, C. A., and Black, A. C., Jr. 1981. Prenatal exposure to ethanol 
alters the organization of hippocampal mossy fibers in rats. Science 211: 957–59. 
Wexler, K., and Culicover, P. 1980. Formal principles of language acquisition. Cambridge: 
MIT Press. 
White, E. L. 1989. Cortical circuits: synaptic organization of the cerebral cortex—structure, 
function, and theory. Boston: Birkhaeuser. 

REFERENCES 
•  217 
Wiener, P. 1958. Charles S. Peirce: values in a universe of chance. New York: Doubleday. 
Wiesel, T. N., and Hubel, D. H. 1965. Comparison of the effects of unilateral and bi­
lateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology 
218: 1029–40. 
Wiesel, T. N., Hubel, D. H., and Lam, D. M. K. 1974. Autoradiographic demonstra­
tion of ocular-dominance columns in the monkey striate cortex by means of 
transneuronal transport. Brain Research 79: 273–79. 
Wirth, N. 1971. Program development by stepwise refinement. Communications of the 
Association for Computing Machinery 14 (4): 221–27. 
Wolf, S. S., Jones, D. W., Knable, M. B., Gorey, J. G., Lee, K. S., Hyde, T. M., Coppola, 
R., and Weinberger, D. R. 1996. Tourette syndrome: prediction of phenotypic 
variation in monozygotic twins by caudate nucleus D2 receptor binding. Science 
273: 1225–27. 
Wu, C. P. 1992. “Semantic-based synthesis of Chinese idioms (Chengyu).” Ph.D. diss. 
Georgetown University. 
Yan, J., and Suga, N. 1996. Corticofugal modulation of time-domain processing of 
biosonar information in bats. Science 273 (5278): 1100. 
Zhang, Y., Suga, N., and Yan, J. 1997. Corticofugal modulation of frequency process­
ing in bat auditory system. Nature 26, 387 (6636): 900–903. 

This page intentionally left blank 

INDEX
abduction (Peircean), 10, 15, 89
accommodation, Piagetian, 87
acetic acid, 23, 24
acetylcholine, 46, 47, 49
Ackley, D., 169
action potential, 40–44, 41 f.
adaptive resonance theory (ART), 74–78
adrenaline, 49, 178
adrenocorticotrophic hormone 
(ACTH), 178
Adrian, E. D., 7
afferent signals, 53
affine transformation. See fractal 
agonist-antagonist competition, 78
agreement marking, 149
alcohol, 176
alexia, 65
American sign language (ASL), 22, 67,
175, 195 n. 2.1
amino acids, 23
amnesia, anterograde, 55, 88
amplitude, 91
amygdala, 54
anatomies 
avalanche, 32 f.
columnar, 70, 71 f.
minimal, 17, 32, 34
off-center, off-surround, 62, 63 f.
on-center, off-surround, 54, 63, 64 f.,
73, 75 f., 76, 106, 115, 124,
planar, 72
polypole, 114–5, 120–2
radial, 33 f.
serial, 31
tonotopic, 104–6, 115, 120–2
tonotopic and on-center off-
surround, 121–2
AND (logical operation), 81
angular gyrus, 65, 67
animal language, 13, 22
ape, 101
animals, multicellular, 27
aphasia, 7
aphasia, childhood, 67, 68
aphasia, conduction, 66, 67
Broca’s, 127, 177
motor, 61
apoptosis, 182. See also neuroptosis 
Archaea, 28
arcuate fasciculus, 38, 66, 67 f., 69, 181,
183, 187
Aristarchus, 21
Aristotle, 4, 164
ART. See adaptive resonance theory 
articulatory posture, 120
artificial intelligence, 20, 144
Aryan language, 21, 164
Asanuma, C., 49
Asimov, I., 195 n. 2.2
ASL. See American sign language 
219 

167 
220  • 
INDEX 
association cortex. See lobe, parietal 
cerebral 
atrophy, neural, 70
attention, 130
attentional deficit disorder (ADD), 179
auditory nerve, 62, 69
auditory pathways, 102, 104 f.
augmented transition network (ATN), 
autoreceptors, 196 n. 3.5
autosomal dominance, 181
axon, 27, 36
axon, squid giant, 39, 42
collaterals, 32, 37, 38, 44
terminal, 42, 87
babbling, 183
back-propagation, 169
Bacon, F., 6
Baker, C. L., 141
baking soda, 23
Bar-Hillel, Y., 166, 167
Barney, H. L., 120
barrels, neural, 71, 75
basal ganglia, 51, 54, 120
basilar membrane, 102
basket cells, 48, 63, 127
behaviorism, 8, 19, 124, 147, 185, 186,
192 
Békésy, G. von, 102
Bellugi, U., 176
Berko, J., 141
Bickerton, D., 148
bilingual code-switching, 118
bilingualism, 116, 117, 139, 191,
198 n. 7.2–3 
black box, 165
Bliss, T. V. P., 47 
Bobrow, D., 167
Bohr, N., 195 n. 1.5
Boltzmann machine, 169
brain modules, 64
brain sections 
horizontal, 5 f.
lateral, 59 f.
medial, 53, 59 (figs.)
brain stem, 53
brains 
six-celled, 34, 35 f.
two-celled, 33
Braine, M., 185, 201 n. 12.16
Broca, P., 7, 58, 173
Broca’s area, 60, 61, 66, 174
Brodmann areas, 58, 59  f. 
Brown, R., 132, 134, 180
bullet, conical, 6
burst, plosive consonant, 100
calcium (Ca
2+
), 51
calmodulin, 48
CAM kinase II, 48
Cambrian period, 28
Carpenter, G. A., 197 n. 5.5
case grammar, 151, 167
case marking, 149
catecholamine, 50
caudate nucleus, 54, 177
cell, eukaryotic, 24, 26 f.
cell nucleus, 26
cerebellar cortex, 56 f., 57 f.
cerebellar feedback, 129 f.
cerebellar nuclei, 56
cerebellar overshoots, 178
cerebellum, 34, 56, 57, 127, 130, 171, 172,
192, 201 n. 12.7
cerebral asymmetry, 174 f., 200 n. 12.7 
cerebrum, 36, 57, 172, 196 n. 4.1
surgical view, 58
chains, syntactic 147
Chambers, R., 21
chandelier cells, 48, 49 f., 71, 197
Changeux, J.-P., 172
Chao, Y.-R., 150
chinchilla, VOT perception by, 112
chloride, 48
Chomsky, N., 9, 19, 22, 23, 84, 112, 123,
132, 143, 147, 166–7
chordates, 34, 52
chunking. See unitization 
Church, A., 19, 144
cingulate gyrus, 55
cingulum, 55
circular reaction, 183
Cl
-
.  See chloride 
climbing fibers, 56
clitics, 157
CNV (contingent negative variation), 88
cochlea, 102
cochlear nucleus, 102, 104, 105
coelenterates, 27, 30, 32, 34

Cohen, M. A., 127
Cohen, S., 70
columnar organization. See anatomies, 
columnar 
combinations, formula for, 15
commissurectomy, cerebral, 65
comparator theory of hippocampus, 88
complementation of storage sites, 83
computational linguistics, 166 
computer games as therapy, 179, 180
computer processing, parallel, 14, 86
computer processing, serial, 14
connectionism, 19
consonants, 99
alveolar, 100, 101
fricative, 101
labial, 100
nasal, 97
plosive, 100
prevoiced, 114
retroflex, 97
stop, 101
unvoiced, 109
velar, 100, 101
voiced, 109
consequences, 161
contralateral connection. See ipsilateral 
v. contralateral connection 
contrast enhancement, 82, 115
auditory, 106 
contrastive analysis, 117, 165
Cook, W. A., 151 
Copernicus, N., 21, 89, 163, 164
corpus callosum, 65, 69
cortex, 196 n. 4.1. See also cerebrum, 
neocortex 
Crago, M. B., 177
Crick, F., 24, 49
critical periods, 84, 173, 186
environmentally induced, 175
cryptography, 165
Dale, H. H., 7
Damasio, H., 174, 196 n. 4.3
damping, 93
Darwin, C., 21
deaf children, 186
death, 14, 23
deep structure, 151, 166
Dennett, D., 170
I N D E X  
•  221 
dentate nucleus of the cerebellum, 129
deperseveration, cerebellar, 136, 138
depolarization, 39, 43
Derwing, B., 141
Descartes, R. 4
dichotic listening, 65
diencephalon, 52, 54
dipoles 
bilingual, 118
gated, 76, 86, 112, 136, 156
rhythmic, 136, 138
DNA, 24, 25 f.
dopamine, 47, 50, 53, 54, 177
dysarthria, 66, 127
ataxic, 131
dyslexia, 178, 180, 190, 200 n. 12.7
dysphasia, 177, 180, 200 n. 12.6
ear, inner, 102
ear, middle, 102
ear, outer, 102
Eden, G. F., 181
edge detection, 83
auditory, 107 
EEG, 195 n. 2.1
efferent signals, 53
Eimas, P. 111, 114 
Einstein, A., 20, 163, 195 n. 1.5
elephants, 52
embedded clauses, rhythmic generation 
of, 160 f.
enigma machine, 165
epilepsy, grand mal, 65 
epilepsy, temporal lobe, 55
epileptic convulsion, 34
Erlanger, J., 87
evoked potentials, 47, 87, 89
evolution, 21
expansions. See recasts 
expectancies, contextual, 87
f
0. 
See fundamental frequency 
fallibility, 163
fascicles, 38
feature filling, 115, 116
feedback, 73, 112
feet, metrical, 134, 139, 184
planning, 135
Feigenbaum, E. A., 195 n. 1.4
fetal alcohol syndrome (FAS), 176

222  • 
INDEX 
Fillmore, C., 151
filter, acoustic, 95
filter, vocal tract, 96
flagellates. See Mastigophora 
fMRI. See functional magnetic 
resonance imagery 
formant transitions, 100, 179
formants, children’s, 98
formants, female, 98
formants, vowel, 97
fornix, 55
fossilization, 192
fractals, 28
Fraser, B., 167, 199 n. 10.8
free will, 20
frequency domain, 94
functional magnetic resonance imagery 
(fMRI), 68, 195 n. 2.1
functionalism, 13, 150
functors. See morphemes, grammatical 
fundamental frequency (f
0
), 91, 98
children’s, 98
female, 98
GABA (gamma-amino-butyric acid ), 47,
48, 79
Galileo, 164
gamma-amino-butyric acid. See GABA 
Gasser, H., 87
gates, potassium, 39
gates, sodium, 39
generative theory, 9, 166 
Genie, 186
Geschwind, N., 173, 175
Gilman, A. G., 47
given information, 150
globus pallidus, 54
glottal pulse, 93, 94 f.
glottis, 90
glutamate, 47, 179, 178
glutaminergic arousal, 180
Golgi, C., 7, 45
Gopnik, M., 177, 180, 181
granule cells, 56
Gray, J. S., 88
Greenberg, J., 148
Grice, H. P., 150
Grimm, J., 164
Grimm, W., 164
Grossberg, S., 16, 72, 78, 86–88, 127, 169,
179, 183, 197 n. 5.5–6
Gruber, J. S., 151
habituation, 81, 82, 111. See also 
neurotransmitter, depletion of 
hair cell, 102, 104
Halle, M., 132
harmonics, 91–3
Harvey, W., 4
hearing, 102
Hebb, D., 45–46
Heisenberg, W., 20
hemisphere, cerebral, 58
hemisphere, left cerebral, 58, 64
hemisphere, right cerebral, 58, 67
Heschl’s gyrus. See neocortex, primary 
auditory 
Hinton, G. E.,169
hippocampus, 49, 55, 88, 89
hippocampus as comparator, 55
HM, 55, 88, 196 n. 4.3
Hodgkin, A. L., 39
Hohne,  E. A.,182
Holmes, J. A., 190
Holy Roman Empire, 164
homunculus, motor, 59, 60 f.
homunculus, somatosensory, 61 f. 
Hopfield, J. A., 169
horizontal cells, 182
hormones as neurotransmitters, 54
horseshoe crab. See Limulus polyphemus 
Hubel, D. H., 71, 84, 173, 182
Huxley, A. F., 39
hyperactivity. See attentional deficit 
disorder 
hyperpolarization, 48
hypothalamus, 54–55
Illiac IV, 86, 169
imagination, 193
imitation, 11, 184–6
immediate memory span. See memory 
span, transient 
inferior colliculus, 53, 102, 106, 113
inferior olivary complex (inferior olive), 
127, 129–30
inhibition 
in cerebellum, 57
lateral, 34, 75–76, 82, 113

inhibitory surround, radius, 86, 127
innateness of language, 9, 186
innate rules, 146
interference, 116–7, 165, 191
International Phonetic Alphabet (IPA),
95, 109
ipsilateral v. contralateral connection,
65
Isaacson, R. L., 55
Jackendoff, R., 10–11, 15
Jakobson, R., 136
James, W., 162–3
Jones, W., 21, 164
Jusczyk, P., 182
K
+
.  See potassium
Kasamatsu, T., 173, 178, 180
Kepler, J., 89
Kim, K. H. S., 174, 200 n. 12.1
Klein, D.,  177
knob, presynaptic. See axon terminal
koniocortex. See neocortex, primary
auditory
Kripkee, B., 179–81
Kuhl, P. K., 112, 120
Kuhn, T. S., 163
Lam, D. M. K., 84
Lamarck, J., 21
lambda calculus, 19, 144
laminae, cerebral, 37 f., 68
language
“acquisition,” 9, 171
acquisition device, 13, 171
learning, 171, 181
teaching, 164–5
language-learning impaired (LLI), 179
larynx, 90, 91 f.
Lashley, K., 8, 134–5, 143
lateral geniculate nucleus (LGN), 54, 62,
77
lateral inhibition, 115, 124
lateral lemniscus, 105
lateralization, 58, 64, 173–5
learnability theory, 11, 186
learning, 46, 80
adult, 191
backward, 125
bowed serial, 126 f.
I N D E X  
•  223 
cerebellar, 190
disabilities, 20
opportunistic, 86
pattern, 116
serial, 123–5, 129, 131
Leeuwenhoek, A., 7
left-handedness, 67
Lehmann, W. P., 148
Lenneberg, E. H., 84, 173
Leonard, L. B., 178
Levi-Montalcini, R., 70
Levitsky, W., 173
LGN. See lateral geniculate nucleus
Li, C. N., 150
Lichtheim, L., 66
Lieberman, P., 22
limbic system, 53–54, 88
Limulus polyphemus, 62
LISP computer language, 147
lobe
frontal cerebral, 58
occipital cerebral, 5 f., 62
parietal cerebral, 62
temporal cerebral, 62
Locke, J., 6, 172
locus coeruleus, 53
Loewi, O., 7, 46, 49
logogen model, 168
Lømo, T., 47
long-distance dependencies, 167
long-term memory (LTM), 46–48, 89
equation for, 79
invariance of, 83, 118
long-term potentiation (LTP), 47, 48 f.
Loritz, D., 118
loudness, 91
LTM. See long-term memory
Lund, J. S., 182
Luther, M., 164
machine translation, 166
Madison, D. V., 50
magic number, 127
magnesium, 48
magnetoencephalogram (MEG), 89
mammilary body, 55
manner, articulatory 101
Mastigophora, 27 f., 28, 36
McCollough effect, 76 f., 197 n. 5.1
McCulloch, W. S., 45

224  • 
INDEX 
McNeill, D., 11, 132–4, 185
meaning, 161–3, 170
meatus. See ear, outer 
medial geniculate nucleus (MGN), 54,
102, 105–6, 113
medulla, 53
membrane 
active, 27
cell, 26
neural, 38
nuclear, 26
passive, 26
memory, complementation of, 118 
memory span 
short term, 127
transient, 127
messengers, reverse, 51
messengers, second, 47
metathesis, 19, 134–9, 143, 181
metrical feet, 181. See also feet, metrical 
metrical phonology, 134
Mg
2+
.  See magnesium 
MGN. See medial geniculate nucleus 
midbrain, 53
Miller, G. A., 127
Miller, J. D., 112
Miller, S., 23–24, 195 n. 2.2
Milner, B., 55
Minié, C., 6
Minsky, M., 86, 169, 197 n. 5.7
monosodium glutamate (MSG), 
178–80
morphology, 177, 180
derivational, 140–1
English plural, 141
grammatical, 139, 140
inflectional, 140, 142
offbeat, 139–40, 155, 178
Morton, J., 168
mossy fibers, 56
motherese, 183
Mountcastle, V., 71
movement, 143
dative, 154
particle, 155
passive, 11, 143
multiple sclerosis, 42
myelin, 42 f., 43 f.
myelin and critical periods, 201 n. 12.10
myelin, 41, 69, 182
N400, 88
Na
+
.  See sodium 
negation, 158–9, 187–8, 193
neocortex, 196 n. 4.1. See also cerebrum 
auditory, 62 
motor, 58
primary auditory, 62, 68, 69, 102, 106, 115 
primary sensory, 61 
primary visual, 62, 68–69, 73
sensory, 61 
nerve growth factor (NGF), 51, 70
neural Darwinism, 70
neural networks, artificial, 12. See also 
connectionism 
neurogenesis, 68
neuron, 27, 36
neuroptosis, 182
neurotransmitter, 45, 46
depletion of, 81, 87
retrograde, 51
new information, 150, 188–9
Nicoll, R., 50
Nietzsche, F. W., 5, 8 
nitric oxide, 51, 70
NMDA (N-methyl D-aspartate), 47, 79
Nobel prizes in brain science, 14
noise suppression, 82
auditory, 107 
nonlinearity, 80
nonspecific arousal (NSA), 78, 88–89,
117, 136, 159
noradrenaline, 49–50, 53, 173, 178–80,
196 n. 4.4 
normalization, 83
normalization, phonemic, 117, 120
notochord, 52
NSA. See nonspecific arousal 
octopus cells, 104, 105 f., 179
ocular dominance columns, 84
off-center off-surround anatomy. See 
anatomies, off-center, off-surround 
old information, 150
oligodendrocyte, 41, 43 f.
Olson, S. J., 197 n. 5.6
ontogeny of language, 172
ontogeny recapitulates phylogeny, 30,
31 f. 
outstar, 33 f.
oval window, 102

P300, 88
paleocortex, 54
Papert, 86, 169, 197 n. 5.7
parahippocampal lobe, 55
parallel fiber, 56
Parkinson’s disease, 47, 50, 54
passive voice, 143, 152–3
Peirce, C. S., 8, 10, 59, 87, 89, 153, 161–3
Penfield, W., 59
perception 
of sound, 106
bilingual, 116
categorical, 109, 111, 115
phonemic, 109, 115, 116 f.
subliminal, 106
perceptrons, 86, 169
perseveration, 127. See also 
deperseveration 
PET. See positron-emission-tomography 
Peterson, G. E., 120
phone, 95
phoneme, 95
phonics, 191
phospholipid hydrocarbon, 24
phosphorylation, 48
phrase planning, 135
Piaget, J., 87, 183
Pitts, W., 45
pituitary gland, 54
place, 100
plan, 184
planar organization. See anatomies, 
planar 
planum temporale, 173, 181
plasticity, 68, 173
Plato, 164
polypole. See anatomies, polypole 
pons, 53
pontine nucleus, 127
positron emission tomography (PET), 89
potassium, 39–41
power spectrum, 94 f.
pragmatics, 150
pragmatism, 162–3
Pribram, K., 55
primacy effect, 125, 149, 188
priming effects, 156, 168
parity, 86
programmed cell death. See apoptosis 
pronouns, 157
I N D E X  
•  225 
proprioception, 129
Proto-Indo-European, 21
Prozac, 47
puberty, neural, 72
Purkinje cell, 56–57, 129–30
pushdown-store automaton, 19
putamen, 54, 118, 120, 177
pyramidal cells, 36–37, 47–48, 69–70, 75
pyramidal tract, 53, 196 n. 4.2
quantal articulation. See speech 
articulation, optimal 
quenching threshold (QT), 179
questions, 159–60
Quillian, M. R., 167–8
Ramón y Cajal, S., 7, 15, 45, 57, 182, 195
n. 1.2
Ranvier, nodes of, 41
raphe nucleus, 53
Rauschecker, J. P., 120
reading, 190
and Chinese, 201 n.12.17
rebounds, 76, 77 f., 78, 83, 86–87, 136–8,
156 
vocalic, 117 f.
recasts, 186
recency effect, 125
receptor, neurotransmitter, 46
recursion, 19–20, 144
refractory time, 40
relation gradient, 155, 177
relative clauses, 145, 159
Renshaw interneurons, 40
resonance 
adaptive, 34, 80, 89
acoustic, 93
reticular formation, brain stem, 49
reticular formation, brain stem, 54
reticular formation (nucleus), thalamic, 
54, 63, 69
retinal afterimage, 76
retrograde messenger, 70
rhythm, 34, 131–2, 141, 172, 180, 190. See 
also dipoles, rhythmic 
circadian, 131
generators, 131, 136
Rice, M. L., 178
Ritalin, 47, 180
Rodbell, M., 47

226  • 
INDEX 
Rolando, fissure of, 58
Romeo and Juliet135
Rosenblatt, F., 86, 169
Ross, C., 158, 188
Rumelhart, D., 169
saccades, 178–80
saltatory conduction, 42
Sanskrit, 21
Schwann cell, 41, 43 f.
Sejnowski, T., 169
self-organization, 173
self-similarity
self-similarity, 23–25, 29, 170
semantic features, 167
semantic network, 167–8
semantic wall, 166
semantics, 12
semivowel, 99
sentential rhythm dipole, 159
serial behavior, 125, 134
serial order, 124
serial order gradient, 127
serial processing, 147. See also computer
processing, serial
serial theory, 123
serotonin, 47, 53
sex, 30
Shepherd, G. M., 196 n. 4.4
Sherrington, C. S., 7, 45, 78
shunting equations, 80
sigmoidal signal function, 80
sign language. See American sign
language
Simon, H. A., 195 n. 4
Singer, H., 190
Skinner, B. F., 8, 123, 184
social Darwinism, 8
sociolinguistics, 150
sodium, 39–41
sound, physics of, 90
sound localization, 105–6
sound pressure of speech, 102
specific language impairments (SLI), 180
speech, 90
speech articulation, 100
optimal, 102 f.
speech sounds, periodic, 90
speech sounds, aperiodic, 99
Spencer, H., 8
Sperry, 65
spike. See action potential
spine, dendritic, 42
split-brain. See commisurectomy,
cerebral
Spooner, W. A., 19, 134
Spooner circuit, 138 f.
spoonerism, foot-timed, 135
spoonerism, syllable-timed, 136
spoonerisms, 19, 134, 139
Spooner’s circuit, 135, 136 f., 138 f.
spreading activation models, 168
stellate cells, 71
stimulus-response chains, 123–4, 147
stress
contrastive, 154
English, 132
French, 198 n. 9.2
patterns, 134
related effects in Chinese, 198 n. 9.2
Russian, 199 n. 9.3
Turkish, 199 n. 9.3
stress-timed languages, 139
striate cortex. See neocortex, primary
visual
stuttering, 130
subject selection hierarchy, 152
subject, 148–9
substantia nigra, 53
subtopics. See topics and subtopics
Suga, N., 114
superior colliculus, 53
superior olivary complex (superior
olive), 105
syllable planning, 135
symmetry, bilateral, 34
synapse, 44 f., 46
gap junction, 44, 45
syntax, 188
rule-governed, 9, 12
Szenthágothai, J., 71, 197 n. 4.6
tabula rasa, 6, 115, 172, 192
Tallal, P., 179–80
tempo, 130–1
temporal processing deficits, 179
teratogens, 176, 200 n. 12.2
terrible twos, 187
Tesniere, L., 151

testosterone, 174
thalamus, 54, 129
reticular formation (nucleus), 54, 63, 69
thematic relations, 151
thermophilic life. See Archaea
Thompson, S., 150
thresholds, 79, 124
neuron, 42
quenching, 80
time domain, 95
tip-of-the-tongue phenomenon (TOT),
132–4, 184, 190–1
Tolman, E. C., 87
tonotopic organization. See anatomies,
tonotopic
topic gradient, 153–4
topics and subtopics, 149–51, 154, 186
topicalization, 152, 188
topic-comment grammar, 150
TOT. See tip-of-the-tongue phenomenon
Tourette syndrome, 177, 181
Tower of Hanoi problem, 55, 88
traces, syntactic 158
transformations. See movement
trees, binary, 19
truth, 161–3
Turing machine, 166
Turing, A., 13, 144
unitization, 127, 132, 138
universal order, 148
subject-verb, 149
topic-verb, 149
ventricles, brain, 5 f.
vertebrates. See chordates
vestibular system, 102
vision, 62–65
I N D E X  
•  227 
visual fields, 65
vocabulary, 184
vocal tract, 22
voice onset time, 109–14, 179
dipole model, 112, 113 f.
Spanish v. Chinese, 114
voicing, 109
volley (action potential), 44
Von Baer, K. E., 31
von der Malsburg, C., 72
Von Neumann limit, 14, 74
Von Neumann, J., 14, 43
VOT. See voice onset time 
vowels, cardinal, 101
walking, 184
Wang, P. P., 176
Washoe (chimpanzee), 22
Watson, J. B., 8, 24
Weaver, W., 166
Wells, W. C., 21
Wernicke, C., 7, 58, 66
Wernicke’s area, 62, 66–67, 200 n. 12.1
Wernicke-Lichtheim model of aphasia, 
66 f. 
West, J. R., 175
Wexler, K., 178
whales, 52
white matter. See myelin 
Wiesel, T. N., 71, 84, 173, 182
Williams syndrome, 169, 176, 181
word planning, 135
writing, 192
wug test, 141, 177, 200 n. 12.6
XOR (logical operation), 86, 169, 197 n.
5.7 

Document Outline

  • Contents
  • ONE: Lought and Thanguage
  • TWO: Jones's Theory of Evolution
  • THREE: The Communicating Cell
  • FOUR: The Society of Brain
  • FIVE: Adaptive Resonance
  • SIX: Speech and Hearing
  • SEVEN: Speech Perception
  • EIGHT: One, Two, Three
  • NINE: Romiet and Juleo
  • TEN: Null Movement
  • ELEVEN: Truth and Consequences
  • TWELVE: What If Language Is Learned by Brain Cells?
  • Notes
  • References
  • Index
    • A
    • B
    • C
    • D
    • E
    • F
    • G
    • H
    • I
    • J
    • K
    • L
    • M
    • N
    • O
    • P
    • Q
    • R
    • S
    • T
    • U
    • V
    • W
    • X

Yüklə 2,9 Mb.

Dostları ilə paylaş:
1   ...   10   11   12   13   14   15   16   17   18




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin