Misol 3.
x x x
3 15 35
x x
63 99
x
143
12
tenglamani yeching.
solve((x/3+x/15+x/35+x/63+x/99+x/143)=12,x);
26
Misol 4.
3x 2 2x 3 2,5x 2 0
tenglamani yeching.
4 2
solve(((3*x-2)/4+(2*x+3)/2-2.5*x+2)=0,x);
4.
Agar tenglama bir necha yechimga ega bo`lsa, name buyrug’i orqali boshqa hisoblash amallarini bajarishda yechimlarni tanlab olamiz. Berilgan tenglamaning k- yechimini aniqlash uchun kvadrat qavslar ichida yechim tartibini ko`rsatish lozim: name[k]. Masalan:
x : a ,
0
Misol 1. Tenglamani yeching.
1998x2 2000x 2 0
solve(1998*x^2-2000*x+2=0,x);
1, 1
999
x:=solve(1998*x^2-2000*x+2=0,x);
x := 1, 1
999
Misol.
x1 va
x sonlari 3x2 2x 6 0
tenglamaning ildizlari bo’lsa, ildizlari
2
yig’indisi va ayirmasini toping.
x:=solve(3*x^2-2*x-6=0,x);
x := 1 + 1
3 3
19 , 1 - 1
3 3
2
3
Tenglamalar sistemasini yechish
Tenglamalar sistemasi solve({eq1,eq2,…},{x1,x2,…}),buyrug’I yordamida yechiladi, faqat aylana qavslar ichidagi 1- figurali qavs ichida tenglamalar, ikkinchi figurali qavs ichida esa tenglamaning o`zgaruvchilari kiritiladi. Agar sizga tenglamaning yechimlari bilan bog’liq ravishda keyingi hisoblashlar kerak bo`lsa, solve komandasi name ning qandaydir nomini ifodalaydi. So`ngra assign(name) buyrug’i uni to`ldiradi. Shundan keyin yechimlar ustida matematik amallar bajarish mumkin. Masalan:
s:=solve({a*x-y=1,5*x+a*y=1},{x,y});
s:={ x a 1 , y a 5 }
5 a2 5 a2
assign(s); simplify(x-y);
6
5 a 2
x y 2 y 5
Misol 1. Tenglamalar sistemasini yeching 2 3 2
Maple dasturida yechish:
3x
2 y 0
2
s:=solve({(x+y)/2-2*y/3=5/2, 3*x/2+2*y=0},{x,y});
s := { y = -3, x = 4}
Javob: (4, -3)
Misol 2. (x,y) sonlar jufti toping.
Maple dasturida yechish:
2x y 5
3 x 2 y 4
sistemaning yechimi bo’lsa, x – y ni
s:=solve({2*x-y=5,3*x+2*y=4},{x,y});
s := { x = 2, y = -1}
3
Javob: x – y =3
3x y 45
Misol 3. Agar x 3y 15 bo’lsa, x+y+z nimaga teng.
3z x 6
Maple dasturida yechish: s:=solve({3*x+y=45, z+3*y=-15, 3*z+x=6},{x,y,z});
s := {z = (-24)/7, y = (-27)/7, x = 114/7} yoki
s : z 24 , y 27 , x 114
7
7
7
assign(s);simplify(x+y+z);
9
Javob: x + y + z = 9
Chiziqli va ikkinchi darajali tenglamalar sistemasining yechimini Maple tizimida osongina topish imkoniyati mavjud. Quyidagi Maple tizimida bajarilgan misollar yechimi bilan birgalikda keltirilgan.
Misol 1. Sistemadan
x y ni toping
x 2 y 2 xy 8
x y 3
Maple dasturida yechish: s:=solve({x*x+y*y+x*y=8, x+y=3},{x,y});
s := { y = RootOf ( _Z 2 - 3 _Z + 1, label = _L1), x = -RootOf ( _Z 2 - 3 _Z + 1, label = _L1) + 3}
assign(s); simplify(x*y); 1
Javob: x y =1
Misol 2. Sistemaning yechimini toping.
Maple dasturida yechish:
x 2 y 2 2xy 1
x y 3
s:=solve({x^2+y^2-2*x*y=1, x+y=3},{x,y});
s := { y = 1, x = 2}, { y = 2, x = 1}
Javob: (2;1) va (1;2)
{ y = 1, x = 2}
{y = 2, x = 1}
Misol 3. Ushbu
x y 3
x 2 y 2 6
tenglamalar sistemasidan x ni toping.
Maple dasturida yechish: s:=solve({x^2-y^2=6, x+y=3},{x,y});
s : y 1 , x 5
2
2
5
2
Javob: x=2,5
Misol 4. Tenglamalar sistemasini yeching.
Maple dasturida yechish:
y 4 2
x 2 y 2
s:=solve({y+4=2, (x^2)*y=-2},{x,y});
s := { y = -2, x = 1}, { y = -2, x = -1}
Javob: (-1; -2), (1; -2)
{ y = -2, x = 1}
{y = -2, x = -1}
Misol 4. Agar
x y 5 va
xy 7
bo’lsa,
x3 y xy 3
ning qiymati qancha bo’ladi?
Maple dasturida yechish: s:=solve({x-y=5, x*y=7},{x,y});
s := { y = RootOf ( _Z 2 + 5 _Z - 7, label = _L1), x = RootOf ( _Z 2 + 5 _Z - 7, label = _L1) + 5}
assign(s); simplify(x^3*y+x*y^3);
Javob:
x3 y xy 3 =273
273
Misol 5. Agar
a b 12
va ab a2 144 bo’lsa, a ning qiymati qanchaga teng?
Maple dasturida yechish: k:=solve({a-b=12, (-a)*b+a^2=144}, {a,b});
k := { a = 12, b = 0}
Javob: a=12 Misol 6. Agar toping.
12
x2 4 xy y2 4 2 xy va
x y 12
bo’lsa, xy ning qiymatini
Maple dasturida yechish: k:=solve({x^2-4*x*y+y^2=4-2*x*y, x+y=12}, {x,y});
k := { y = 5, x = 7}, { y = 7, x = 5}
assign(k); simplify(x*y);
35
Javob: xy =35
Misol 7. b a 18
va a2 b2 170 ,
ab ?
Maple dasturida yechish: t:=solve({b+a=18, a^2+b^2=170}, {a,b});
t := { b = 7, a = 11}, { b = 11, a = 7}
assign(t); simplify(a*b);
77
Javob: ab 77
xy 10
x y 7
Misol 8. yz 40
tenglamalar sistemasidan x ni toping.
y z 13
zx 5
x z 8
Maple dasturida yechish: S:=solve({x*y/(x+y)=10/7, y*z/(y+z)=40/13, z*x/(x+z)=5/8}, {x,y,z});
S : z 80 , y 80 , x 80
49 23 79
80
79
Javob:
x 80
79
Tenglamalarning sonli yechimi
Tenglamani sonli yechishda, berilgan transcendent tenglama analitik yechim bermasa, maxsus fsolve(eq,x) buyrug’idan foydalaniladi. Parametr xuddi solve dagi kabi ko`rsatiladi. Masalan:
x: =.7390851332
§5. Tengsizliklar va tengsizliklar sistemasini yechish.
Oddiy tengsizliklarni yechish
solve buyrug’i tengsizliklarni yechishda ham qo`llaniladi.Tengsizlikning yechimi o`zgaruvchining o`zgarish oralig’i bo`lgan interval ko`rinishida beriladigan tengsizlikning yechimi yarim o`qlarda bo`lsa, u/h RealRange(–, Open(a)), ya’ni x(–, a), a – ixtiyoriy son. Open so`zi interval ochiq chegara degan ma’noni anglatadi. Agar ushbu so`z bo`lmasa, tenglamalr to`plamida bu interval yopiqligini anglatadi.Masalan:
s:=solve(sqrt(x+3) convert(s,radical);
2
RealRangeOpen
3
21 ,
Agar siz x(a, b) ko`rinishda ko`rishni istamasangiz, berilagan o`zgaruvchini
a<x, x< b tipda bo`lsa, figurali qavslarda ko`rsatish kerak.Masalan:
> solve(1-1/2*ln(x)>2,{x});
{0 x, x e(2)}
Tengsizliklar sistemasini yechish
solve buyrug’i yordamida tengsizliklar sistemasini ham yechish mumkin.
Masalan:
> solve({x+y>=2,x-2*y<=1,x-y>=0,x-2*y>=1},{x,y});
{x 1 2 y, 1 y}
3
Misol 1. Tengsizliklar sistemasi nechta butun yechimga ega?
3 4x 5
2x 3(x 1) 1
Maple dasturida yechish:
> solve({3+4*x>=5, 2*x-3*(x-1)>-1},x);
1 x, x 4
2
Javob: Tengsizliklar sistemasi 3 ta butun yechimga ega.
Misol 2. Tengsizliklar sistemasini yeching.
Maple dasturida yechish:
x( x 1) 10 ( x 1) 2 3
3 x 4( x 7) 16 3 x
> solve({x*(x+1)+10>(x+1)^2+3, 3*x-4*(x-7)>=16- 3*x},x);
6 x, x 6
y 5 2 y 3
Misol 3. Tengsizliklar sistemasini yeching. 4 3
4 y 1
y 4
Maple dasturida yechish:
2 3
solve({(y-5)/4<(2*y+3)/3, (4*y+1)/2<(y-4)/3},y);
5
27 y, y 11
10
Misol 4. Ushbu yechimlarini toping.
1296 : 314 9x 32 2976 : 96
tengsizlikning barcha natural
Maple dasturida yechish:
solve({1256/314<9*x-32, 9*x-32<=2976/96},x);
4 x, x 7
Javob: Tengsizlikning natural yechimlari 5,6,7
Misol 5. Tengsizliklar sistemasining eng katta butun yechimini ko’rsating
x 5 2 x 0
4
2 x 8
Maple dasturida yechish:
x
5
1 2x
> solve({(x+5)/4-2*x>=0, x-(2*x-8)/5>=1-2*x},x);
7
3 x, x 5
13
Javob: Tengsizliklar sistemasining eng katta butun yechimi 0.
|