2-§. Differensiallah qoidalri va formulalari Yig‘indi, ayirma, ko‘paytma va bo‘linmani differensiallash Funksiyaning hosilasi ta’rifidan foydalanib ikki funksiya yig‘indisi, ayirmasi, ko‘paytmasi va bo‘linmasini differensiallash qoidalarini keltirib chiqaramiz.
3-teorema. Agar va funksiyalar nuqtada differensiallanuvchi bo‘lsa, u holda bu funksiyalarning yig‘indisi, ayirmasi, ko‘paytmasi va bo‘linmasi (bo‘linmasi shart bajarilganda) ham nuqtada differensiallanuvchi va quyidagi formulalar o‘rinli bo‘ladi:
1. ; 2. 3. .
Asosiy elementar funksiyalarning hosilalari Asosiy elementar funksiyalarning hosilalarini topishda 17-§ da keltirilgan ekvivalent cheksiz kichik funksiyalardan, teskari va murakkab funksiyalarni differensiallash formulalaridan hamda yig‘indi, ayirma, ko‘paytma va bo‘linmani differensiallash qoidalaridan foydalanamiz.
1. O‘zgarmas funksiya:( ). O‘garmas funksiya butun sonlar o‘qida o‘zgarmas qiymatini saqlagani uchun ixtiyoriy nuqtada uning orttirmasi nolga teng bo‘ladi. Shu sababli