Ratsional va irratsional sonlar, haqiqiy sonlar, sonning absalyut qiymati va uning xossalari



Yüklə 0,62 Mb.
səhifə16/32
tarix16.03.2023
ölçüsü0,62 Mb.
#88274
1   ...   12   13   14   15   16   17   18   19   ...   32
MATEMATIKA MUSTAQIL ISHI

FUNKSIYA HOSILALARINI HISOBLASH
Reja:
1. Funksiya hosilasi, uning geometrik va mexanik ma’nosi
2. Differensiallash, uning asosiy qoidalari va formulalari
Tayanch iboralar: harakat tezligi masalasi, funksiya orttirmasi, argument orttirmasi, hosila, differensiallash, asosiy differensiallash formulalari, yig`indi, ayirma, ko`paytmaning hosilasi, murakkab funksiya hosilasi, hosilaning geometrik va mexanik ma’nosi.
Differensial hisob – matematikaning hosilalar va differensiallarni hisoblash, ularning xossalarini o`rganish hamda funksiyalarni tekshirishga tatbiq qilish bilan shug`ullanadigan bo`limi.
Differensial hisobning vujudga kelishidagi dastlabki ishlar egri chiziqqa urinma o`tkazish masalasini echishda Ferma, Dekart va boshqa matematiklar tomonidan qilingan. I.Nyuton va G.Leybnits o‘zlaridan avvalgi matematiklarning bu boradagi ishlarini nihoyasiga yetkazdilar.
1. Funksiya hosilasi, uning geometrik va mexanik ma’nosi
Hosila tushunchasiga olib keladigan masalalar. Hosila tushunchasiga olib keladigan masalalar jumlasiga qattiq jismni to`g`ri chiziqli harakatini, yuqoriga vertikal holda otilgan jismning harakatini yoki dvigatel silindridagi porshen harakatini tekshirish kabi masalalarni kiritish mumkin. Bunday harakatlarni tekshirganda jismning konkret o`lchamlarini va shaklini e‘tiborga olmay, uni harakat qiluvchi moddiy nuqta shaklida tasavvur qilamiz. Biz bitta masalani olib qaraymiz.
Harakat tezligi masalasi. Aytaylik, M moddiy nuqtaning to`g`ri chiziqli harakat qonuniga ko`ra uning t=t0 paytdagi tezligini (oniy tezligini) topish talab qilinsin. Nuqtaning  vaqtlar orasidagi bosib o`tgan yo`li  bo`ladi. Uning shu vaqtdagi o`rtacha tezligi  ga teng.
Ma’lumki,  qanchalik kichik bo`lsa,  o'rtacha tezlik nuqtaning t0 paytdagi tezligiga shunchalik yaqin bo`ladi. Shuning uchun nuqtaning t0 paytdagi tezligi quyidagi limitdan iborat. 
Fuksiya hosilasi.y=f(x) funksiya (a,b) intervalda aniqlangan bo`lsin, (a,b) intervalga tegishli x0 va x0+ nuqtalarni olamiz.
Argument biror (musbat yoki manfiy - bari bir)  orttirmasini olsin, u vaqtda y funksiya biror  orttirmani oladi. Shunday qilib argumentning x0 qiymatida y0=f(x0) ga, argumentning x0+ qiymatda ga ega bo`lamiz. Funksiya orttirmasi  ni topamiz

Funksiya orttirmasini argument orttirmasiga nisbatini tuzamiz.

Bu – nisbatning  0 dagi limitini topamiz.
Agar bu limit mavjud bo`lsa, u berilgan f(x) funksiyaning x0 nuqtadagi hosilasi deyiladi va  bilan belgilanadi. Shunday qilib,
yoki
Ta’rif. Berilgan y=f(x) funksiyaning argument x bo`yicha hosilasi deb, argument orttirmasi  ixtiyoriy ravishda nolga intilganda funksiya orttirmasi  ning argument orttirmasi  ga nisbatining limitiga aytiladi.
Umumiy holda x ning har bir qiymati uchun  hosila ma’lum qiymatga ega, ya’ni hosila ham x ning funksiyasi bo`lishini qayd qilamiz. Hosilada  belgi bilan birga boshqacha belgilar ham ishlatiladi. 
Hosilaning x=a dagi konkret qiymati  yoki  bilan belgilanadi.
Funksiya hosilasini hosila ta'rifiga ko`ra hisoblashni ko`ramiz.
Misol: funksiya berilgan, uning:
1) ixtiyoriy x nuqtadagi va 2) x=5 nuqtadagi hosilasi y' topilsin.
Yechish:
1) argumentning x ga teng qiymatida  ga teng. Argument  qiymatida  ga ega bo`lamiz.
nisbatni tuzamiz.
Limitga o‘tib, berilgan funksiyadan hosila topamiz. 
Demak,  funksiyaning ixtiyoriy nuqtadagi hosilasi  x=5 da 
Hosilaning geometrik va mexanik ma‘nosi. Harakat qiluvchi jismning tezligini tekshirish natijasida, ya’ni mexanik tasavvurlardan chiqib borib, hosila tushunchasiga keldik. Endi hosilaning geometrik ma’nosini beramiz.
Bizga berilgan y=f(x) funksiya x nuqta va uning atrofida aniqlangan bo`lsin. Argument x ning biror qiymatida y=f(x) funksiya aniq qiymatga ega bo`ladi, biz uni M0(x0; y0) deb belgilaylik. Argumentga Dx orttirma beramiz va natija funksiyaning y+Dy=f(x+Dx) orttirilgan qiymati to`g`ri keladi. Bu nuqtani M1(x+Dx, y+Dy) deb belgilaymiz va M0 kesuvchi o`tkazib uning OX o`qining musbat yo`nalishi bilan tashkil etgan burchagini j bilan belgilaymiz.Endi  nisbatni qaraymiz. Rasmdan ko`rinadiki, ga teng.
Agar Dx®0 ga, u holda M1 nuqta egri chiziq bo`yicha harakatlanib, M0 nuqtaga yaqinlasha boradi. M0M1 kesuvchi ham Dx®0 da o`z holatini o`zgartira boradi, xususan j burchak ham o`zgaradi va natijada j burchak a burchakka intiladi. M0M1 kesuvchi esa M0 nuqtadan o`tuvchi urinma holatiga intiladi. Urinmaning burchak koeffitsienti quyidagicha topiladi

Yüklə 0,62 Mb.

Dostları ilə paylaş:
1   ...   12   13   14   15   16   17   18   19   ...   32




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin