Samarqand davlat universiteti



Yüklə 1,69 Mb.
səhifə11/31
tarix02.01.2022
ölçüsü1,69 Mb.
#41499
1   ...   7   8   9   10   11   12   13   14   ...   31
Tasodifiy qatorlarning yaqinlashishi

4. .

Isbot. Biz xossani isbotlash uchun ikkita va ketma-ketliklarni qaraymizki, bunda ketma-ketlik ga monoton kamayib intiladi, esa ga monoton o‘sib intiladi. belgilashlarni kiritamiz, ligidan to‘plamlar ketma-ketligi ichma-ich qo‘yilgan bo‘ladi va . Ehtimolning uzluksizlik aksiomasiga binoan, da . U holda kelib chiqadi. Bundan va funksiyaning monotonligidan ekanligi kelib chiqadi. ketma-ketlik da + ga monoton yaqinlashganligi uchun to‘plamlar ketma-ketligi ham ,, o‘suvchi ” bo‘ladi va , binobarin, ehtimolning xossasiga asosan .Bundan, xuddi avvalgidagidek, , munosabatlar kelib chiqadi.

Agar x = x0 nuqtada F(x0 + 0) ­- F(x0 — 0) = C0 > O bo‘lsa, funksiya x = x0 nuqtada sakrashga ega bo‘lib, uning kattaligi C0 ga teng bo‘ladi.


Yüklə 1,69 Mb.

Dostları ilə paylaş:
1   ...   7   8   9   10   11   12   13   14   ...   31




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin