Sonlar nazariyasi



Yüklə 0,62 Mb.
Pdf görüntüsü
səhifə22/28
tarix20.10.2023
ölçüsü0,62 Mb.
#158043
1   ...   18   19   20   21   22   23   24   25   ...   28
sonlar-nazariyasi

 
32

a
) 1;
b)
 
Yechish. 
(10
n
+ 9, 
n
+ 1) = 
d
va 10
n
+ 9 = 
dx

n
+ 1 = 
dy
bo’lsin. U holda 
10 (
dy
- 1) + 9 = 
dx
yoki 10 
dy
– 1 = 
dx
va natijada 
d
=1.
c

Yechish
. Agar (3
n
+ 1, 10
n
+ 3) = 
d
bo’lsa, u holda 
,
3
9
30
10
10
30
3
10
1
3



=
+
=
+



=
+
=
+
dy
n
dx
n
yoki
dy
n
dx
n
bundan 1 = 
d
(10

– 3
y
) va
d
= 1. Masalani Yevklid algoritmi yordamida ham yechish mumkin. 
33
. Yechish. 
(
q
+ 1)
N
= 10
a
(
q
+ 1) + 
b
(
q
+ 1) = 
am 
+ [
a

b
(
q
+ 1)], bu yerda 
(
q
+ 1, 10
q
+ 9) = 1 (32 masalaga qarang).
34

 Yechish.
(
a, b
) = 

bo’lsin, u holda
a

md
,
b

nd
, (
m, n
) = 1. 5
a
+ 3
b

(5
m
+ 3
n

d
, 13
a
+ 8
b
= (13
m
+ 8
n
)
d
tengliklardan 5
a
+ 3

va 13
a
+ 8
b
larning 


60 
umumiy bo’luvchisi 
d
bo’ladi. (5
a
+ 13
b
, 13
a
+ 8
b
) = 
D
bo’lsin, u holda
D|d
, 5
a

3
b

m
1
D
, 13
a
+ 8
b

n
1
D
.
Bundan
a
= (8
m
1
– 3
n
1
)
D
,
b
= (5
n
1
– 13
m
1
) = 
D
va
D
a
va

larning 
bo’luvchisi, demak,
D|d
. Natijada
d

D
.
35

 Yechish.
(
)
.
2
1
1
b
a
a
b
a
b
a
a
+
+
=
+
+
(
a,b
) =1 dan (
a
, 2
a

b
) = 1 kelib chiqadi. 
(2
a

b
,
a

b
) = 1 ni ko’rsatamiz. (2
a

b
,
a

b
) = 
d
> 1 bo’lsin, u holda 2


b

dm
,
a

b

dn
, (
m, n
) = 1 va demak,
a

d
(
m
-
 n
),
b

d
(2
n

m
), ya’ni
d
/
a
,
d
/
b
masala shartiga ziddir.
3-§
 
36

a
) 211;
b
) 2543, 2549, 2551, 2557;
c
) 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249.
37.
Yechish. 
(
)
(
)(
)
.
2
2
2
2
4
2
4
4
4
4
2
2
2
2
2
2
2
4
4
+

+
+
=

+
=

+
+
=
+
n
n
n
n
n
n
n
n
n
n
38

Yechish.
Barcha natural sonlarni 5
n
, 5
n
±
1, 5
n
±
2 ko’rinishda yozish 
mumkin. 5
n
ko’rinishdagi son tub son bo’ladi, agar 
n
= 1 bo’lsa va bu holda 

= 5, 
4
p
2
+ 1 = 101, 6
p
2
+ 1 = 151. Bu

ning qiymati masala shartini qanoatlantiradi. 
Boshqa bunday sonlar mavjud emasligini ko’rsatamiz. Agar 

= 5
n
±
1 bo’lsa, 4
p

+ 1 
= 5(20
n

±
8

+ 1) – murakkab son; agar 

= 5

+ 2 bo’lsa, 6
p

+ 1 = 5(30
n

±
24 


1) – murakkab son. 
39

 Yechish
. Barcha natural sonlarni 6
k
, 6
k
±
1, 6
k
±
2, 6
k
±
3 ko’rinishda yo-
zish mumkin. 2 va 3 dan tashqari 6
k
±
1 ko’rinishdagi sonlar tub bo’lishi mumkin 
(teskarisi hamma vaqt o’rinli emas, ya’ni har qanday 6
k
±
1 ko’rinishdagi sonlar tub 
son bo’lmasligi ham mumkin). Agar 
p
= 6
k
– 1 bo’lsa, u holda 
p
+ 10 = 6
k
– 1 + 10 
= 3 (2
k
+ 3) – murakkab son; agar 

= 6
k
+ 1 bo’lsa, u holda 
p
+ 14 = 6
k
+ 1 + 14 = 3 
(2
k
+ 5) – murakkab son. Shunday qilib, bir vaqtda
p
+ 10 va
p
+ 14 sonlar tub 
bo’ladigan 3 dan katta
p
tub son mavjud emasligi ko’rsatdik. 
Agar
p
= 2 bo’lsa,
p
+ 10 va
p
+ 14 – murakkab sonlar bo’ladi. Agar
p
= 3
bo’lsa,
p
+ 10 va
p
+ 14 – tub sonlar bo’ladi. Demak, bitta
p
= 3 son masala 
shartini qanoatlantiradi. 
40

 Yechish
. Shart bo’yicha, 
a
> 3, 
m
= 3
t
+ 1, 
n
= 3
t
1
+ 2. 2 va 3 dan farqli 
tub sonlarni
p
= 6
k
±
1 ko’rinishda ifodalash mumkin (39 masalaga qarang). Agar
a

p
= 6
k
+ 1, u holda
a

n
= 6
k
+ 1 + 3
t
+ 2 = 
= 3 (2
k

t
+ 1) – murakkab son; agar 



= 6
k
–1, to 


m
= 6
k
– 1 + 3 
t
+ + 1 = 3 
(2
k

t
) murakkab son. 
41

 Yechish. p
– 
n
! ning tub bo’luvchisi.
p

n
! – 1 bo’lganligi sababli 
p

n

Boshqa tomondan
n

p
ga bo’linmaydi, bundan
n

p
. Shunday qilib, 
n

p

n
! (bu 
isbotdan tub sonlar soni cheksiz ko’pligi kelib chiqadi). 
42

Yechish. 
Shart bo’yicha, 2
p
+ 1 – to’la kub, ya’ni


61 

p
+ 1 = (2 
x
+ 1)
3
= 8 
x

+ 12 
x

+ 6 

+ 1 = 2 

(4 
x

+ 6 

+ 3) + 1, bundan



(4 
x

+ 6
x
+ 3).
p
– tub sonligidan

= 1 va

= 13, shuning uchun
2

+ 1 = 27 = 3
3
– yagona son. 
43

 Yechish.
Oldin natural sonlar qatorida 5 dan boshlab uchta ketma-ket kel-
gan toq sonlar barchasi tub bo’laolmasligini ko’rsatamiz. Faraz qilamiz, har bir tub 
sonlar jufti oralarida bitta murakkab son joylashgan (egzak sonlar). Tub sonlarni 
bunday joylashishi yetarlicha ziya bo’ladi. Bu holda tub sonlar 6
n
– 1 va 6
n
+ 1
shaklida tasvirlash mumkin va ularning nomerlari 2
n – 

 
va 2
n
bo’ladi. Haqiqatdan 
ham,
n
= 1, 2, 3, 4, 5, 6, … deb
6
n
– 1 = 5, 11, 17, 23, 29, 35,…(bu sonlar nomerlari 2
n
– 1 = 1, 3, 5, 7, 9, 11,…) va
6

+ 1 = 7, 13, 19, 25, 31, 37,… (bu sonlar nomerlari 2
n
= 2, 4, 6, 8, 10, 12,…). Bun-
dan ko’rinyaptiki, har bir son o’zining nomeri uchlanganidan katta: 6
n
– 1 > 3 (2
n

1) va (6
n
+ 1) > 3 

2
n
.
44

Ko’rsatma. 
Natural sonlar qatoridagi sonlarni 30
k
, 30
k
±
±
1, 30
k
±
2, …, 
30
k
±
15 shaklida tasvirlaymiz. Bu sonlardan
p
= 30
k
±
1; 30
k
±
7; 30
k
±
11, 30
k
±
13 lar tub sonlar bo’lishi mumkin. 
45

Yechish.
Agar 
p
– 1 va 
p
+ 1 sonlar orasiga 3 dan katta
p
son joy-
lashtirilsa, (
p
- 1)
p
(
p
+ 1) ko’paytma 3 ga bo’linadi.
p>
3 bo’lganligi sababli (
p

1)(
p
+ 1) ko’paytma 3 ga bo’linishi kerak. Boshqa tomondan
(
p
- 1)(
p
+ 1)8 ga bo’linadi, chunki agar
p
– 12 ga bo’linsa,
p
+ 1 – hech bo’lmasa 4
ga bo’linishi kerak. 
p
2
– 
q
2
= (

- 1)( 

+ 1) – (
q
- 1) (
q
+ 1), bu yerda (
p
- 1) (
p
+ 1) va
(
q
- 1)(
q
+1) lar har biri 3 ga va 8 ga bo’linadi, demak, 
p
2
– 
q
2
24 ga bo’linadi.
46

a

 Yechish. 
Agar 
p
= 2 bo’lsa, u holda 
p
+ 10 – murakkab son. Agar 
p
= 2
q
+ 1 (
q
= 1,2,…,) bo’lsa, u holda
p
+ 5 – murakkab son. 
47

Yechish.
p
= 2
k
+ 1 ko’rinishdagi toq son. 
p

mn
(
m

n
) ko’rinishda 
ko’paytuvchilarga ajralsin. U holda shunday 
x
va 
y
sonlar topiladiki, bular uchun 
quyidagi sistema o’rinli: 
,
2
,
n
m
x
bundan
n
y
x
m
y
x
+
=



=

=
+
.
2
n
m
y

=
Demak, murakkab
p
uchun: 
(
)(
)
.
2
2
2
2
2
2














+
=

=

+
=
=
n
m
n
m
y
x
y
x
y
x
mn
p
Agar

tub bo’lsa, uni 
p
= (2
k
+ 1)

1 yagonashaklda yozish mumkin. Bu hol-
da

= 2

+ 1 = 
p
,

= 1, demak, 
.
2
1
2
1
2
2
2
2
2
2














+
=














+
=
p
p
n
m
n
m
p


62 
Shunday qilib, 
2
2
2
1
2
1














+
=
p
p
p
ko’rinishda tasvirlanish yagona bo’lsa,
p
– 
tub; agar 
2
2
2
2














+
=
n
m
n
m
p
ko’rinishda tasvirlangan bo’lsa,
p
– murakkab 
son.
48
. 47-masala shartidan toq sonlarni (
x

y
) (
x

y
) ko’rinishdagi 
ko’paytuvchilarga ajratishning quyidagi usuli kelib chiqadi: 
p

x
2
– 
y
2
tenglikdan
p

y
2

x
2
, ya’ni
x
ni topish uchun 

ga shunday








2
1
p
y
y
natural son 
kvadratini qo’yish kerakki natijada 
p

y
2
yig’indi kvadratdan (
x
2
) iborat bo’lsin. 
Shu usulda
y
va
x
ni topib
p
(
x

y
) (
x

y
) = 
m n
.
a
) Kvadratlar jadvalidan foydalanib 6643 soniga yaqin bo’lgan son
6724 = 82

olamiz. 6724 – 6643 = 81 = 9
2
. Demak, 6643 = 82
2
–9
2
= (82 + 9) (82 - 9) 
= 91 

73 = 7 

13 

73;
b
) 1769 = 61 

29;
c
) 3551 = 67

53;
d
) 6497=89 

73.
49

 Yechish. N

a
2

b
2

c
2

d
2
va
a
va
b

c
va
d
– sonlarning juft toqligi 
har xil bo’lsin. 
a
va
c

b
va
d
– larning juft toqligi bir xil deb olamiz. (
a

c
) (
a + c

= (
d - b
) (
d + b
) tenglikdan 
v
u
c
a
b
d
b
d
c
a
=
+
+
+


kelib chiqadi. Bunda birinchi kasrni
t
ga va ikkinchi kasrni
s
ga qisqartirilgan deb 
olsak, ya’ni
a – c = tu, d+ b = su, ak = sv, d – b= tv
. U holda 
2
,
2
tv
su
b
sv
tu
a

=
+
=
bo’ladi. Natijada 
(
) (
)
[
]
(
)(
)
.
4
1
4
1
2
2
2
2
2
2
2
2
s
t
v
u
tv
sn
sv
tu
b
a
N
+
+
=

+
+
=
+
=
50

 Yechish. 
972
2
+ 235
2
= 1000009 = 1000
2
+ 3
2
dan 1000009 son ikki usulda 
ikki son kvadratlari yig’indisi ko’rinishda yozilishi kelib chiqadi, demak, bu son 
murakkab va 293 

3413 ga teng. 
51

 Yechish. 
Quyidagi yoyilmani ko’ramiz: 
(
)(
)
(
)
(
)
(
)(
)
;
1
1
1
1
1
1
1
1
1
3
4
5
7
8
2
2
3
4
3
6
9
12
3
5
15
5
10
+

+

+

+
+
=
=
+
+
+
+

+
+
+
+

=


=
+
+
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
Bu yerda
a
12

a
9

a
6

a
2
+ 1 ko’phad
a


a
3

a
2

a
+ 1 ko’phadga 
ko’phadlarni bo’lish qoidasiga asosan bo’lingan. Natijada 3
10
+ 3
5
+ 1 = (3
2
+ 3 + 
1)(3
8
– 3
7
+ 3
5
– 3
4
+ 3
3
– 3 + 1) = 13 

4561.
52

 Yechish.
Agar 
k
– toq bo’lsa, 1 + 2
k
son 1 + 2 = 3 ga karrali. Agar
k

juft bo’lsa, u
k
= 2
n
ga yoki

= 2
n
m
(
m

1 va toq son), yoki
k
= 0. Lekin 


63 
(
)
m
m
k
n
n
2
2
2
1
2
1
2
1
+
=
+
=
+
n
2
2
1
+
ga karrali (agar 
k
= 0 bo’lsa, 2 ga karrali). 
Demak, barcha 
k
= 2
n
dan farqli 
k
lar uchun 
n
2
2
1
+
son murakkab son bo’ladi. 
53

 Yechish.
(
α

β
) = 1, (
α

β
) = 2
n
shartlarni qanoatlantiruvchi barcha 
α
va 
β
lar uchun 
a
α

b
β
murakkab son ekanligini ko’rsatamiz. Haqiqatdan ham. 
(
α

β
) = 1 – 
bo’lib, toq bo’lsa, u holda
α
 

dm

β

dk
, (
m, k
) = 1 va
a
α

b
β
= (
a
m
)
d
+ (
b
k
)
d
a
m
 + 
b
k
ga karrali. Agar 
(
α

β
) = 2
n
d
juft son bo’lib,

> 1 – toq bo’lsa, u holda 
α
= 2


m

β
 = 
2
n
 d k 
bundan
( ) ( )
α
α
β
α
k
m
n
n
b
a
b
a
2
2
+
=
+

son
k
n
m
n
b
a
2
2
+
ga karrali. 
Demak, (
α

β
) = 1 va (
α

β
) = 2
n
shartlarni qanoatlantiruvchi 
α
va 
β
lardan 
tashqari barcha hollarda
a
α
+
b
β
son murakkab bo’ladi. Teskari tasdiq noto’g’ri, ma-
salan 2
4
+ 3
2
= 25 – murakkab son. 
54

 Yechish.
n
– murakkab son bo’lsin, 
n

ab
(
a
> 1, 
b
> 1), u holda 2
n
– 1 = 
2
ab
– 1 = (2
a
)
b
– 1 – murakkab son. Teskari tasdiq noto’g’ri: 2
p
– 1 hamma vaqt tub 
emas, masalan 2
11
– 1 = 23 

89; 2
23
– 1 = 47 

178421. 
4-§
(
)
(
)
(
)
(
)
.
16
,
7
;
3
113
355
)
;
2
,
6
,
1
,
1
,
2
,
1
,
1
,
0
170
99
)
;
292
,
1
,
15
,
7
,
3
33102
103993
)
;
2
,
1
,
1
,
10
,
6
,
1
,
1
,
4
,
1
,
1
,
2
,
1
,
2
10
271828
)
5
=
=
=
=
d
c
b
a

Yüklə 0,62 Mb.

Dostları ilə paylaş:
1   ...   18   19   20   21   22   23   24   25   ...   28




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin