aj(a1j, a2j, …, anj) (j={1; 2; …; m}) mos ravishda j – shart vektori, b(b1, b2, …, bn) vektorga esa cheklash vektori deyiladi. (1) vektor tenglamani qanoatlantiruvchi mumkin bo`lgan barcha m ta haqiqiy son-larning tartiblangan (λ1; λ2; …; λm) tizimlari to`plamiga uning yechimi deyiladi. Agar (k1; k2; …; km) tizim (1) tenglama yechimlaridan biri bo`lsa, u holda k1a1 + k2a2 + … + kmam = b yoki ixchamroq yozganda munosabat o`rinli bo`ladi.
Boshqacha aytganda aj, (j={1; 2; …; m}) shart vektorlarining mos ravishda kj, (j={1; 2; …; m}) koeffitsientli chiziqli kombinatsiyasi b cheklash vektoriga teng.
Vektorni berilgan vektorlar sistemasi bo`yicha yoyish (*) vektorlar sistemasi va b( b1; b2;…; bn) vektor berilgan bo`lsin.
Ta`rifga binoan, va b vektorlarning o`zaro tengligini ta`-minlaydigan tartiblangan (λ1; λ2; …; λm) tizim tanlash (tayinlash yoki ko`rsatish) mumkin bo`lsa, n o`lchovli b vektor berilgan n o`lchovli (*) vektorlar sistemasi bo`yicha yoyiladi deyiladi va λ1; λ2; …; λm sonlar yoyilma koeffitsientlari deb ataladi.
bvektorni berilgan a1, a2, …, am vektorlar sistemasi bo`yicha yoyish uchun (2)
chiziqli tenglamalar sistemasining yechimlaridan birini ko`rsatish yetar-li. Agar (2) chiziqli tenglamalar sistemasi birgalikda va aniq bo`lsa, b vektor (*) sistema vektorlari bo`yicha yagona usulda yoyiladi, agar birgalikda va aniqmas bo`lsa, cheksiz ko`p usulda yoyilishi mumkin. Agar-da chiziqli tenglamalar sistemasi birgalikda bo`lmasa, b vektor (*) sistema vektorlari bo`yicha yoyilmaydi.
Masala. b(3; -7; 6; 9) vektorni a1(1; -1; 2; 0), a2(2; -2; 1; 3), a3(-1; 3; 0; 1), a4(-3; 1; 2; 4) vektorlar sistemasi bo`yicha yoying.