I. 6x4-6=24+6=30 II. 6x4+6=6+6+6+6+6=30
Endi o`quvchilarni amallar nomi, ko`paytirish va bo`lish komponentalari va natijalari bilan tanishadilar: kamayuvchi, ko`paytiruvchi (ko`paytuvchilar), ko`paytma; bo`linuvchi, bo`luvchi, bo`linma.
Bu atamalarni jadvalda ko`rsatish foydali.
Ko`paytirishning o`rin almashtirish xossasini bilish avvalo ko`paytirish amalini mukammal tushunish uchun va o`quvchilar yoddan bilishi zarur bo`lgan hollar sonini ikki marta qisqartirish uchun imkon yaratadi. Bu xossani kataklar, doirachalar, tugma kabi ko`rsatmalar bilan tushuntiriladi.
Masalan: chizmada nechta kvadrat bor?
Yechish: 5x3=15, 3x5=15
Shunday keyin, bu masalalarni taqqoslab, ular nimasi bilan o`xshash va nimasi bilan farq qilishi aniqlanadi. Shunga o`xshash mashqlardan keyin xulosa ifodalanadi. Ko`paytiruvchilarning o`rnini almashtirishdan ko`paytma o`zgarmaydi. Mazkur xossa umumiy holda harflar yordamida quyidagicha yoziladi: axb=bxa
Bu xossani o`zlashtirish maqsadida turlicha mashqlar bajariladi. Ko`paytirish va bo`lishning jadval holini o`rganishga sharoit yaratish maqsadida ular orasidagi bog`lanish tushuntiriladi.
Keyin o`quvchilar misollarni taqqoslashadi va xulosa qilinadi: agar ikki sonning ko`paytmasi ko`paytuvchilardan biriga bo`linsa, u holda ikkinchi ko`paytuvchi hosil bo`ladi. Ko`paytirish va bo`lish orasidagi bu bog`lanishni o`zlashtirishga erishish uchun mashqlar bajariladi.
O`quvchilar tegishli usullarni o`zlashtirib olganlaridan keyin 1 va 10 ga ko`paytirish va bo`lish natijalarini tez topishni o`rganadilar. Shuning uchun bu natijalarni yod olish zarurati qolmaydi. Avval 1 ni songa ko`paytirish holi qaraladi, natija qo`shish bilan topiladi. Masalan, 1x2=1+1=2, natijada quyidagicha xulosa chiqarilishi muhimdir: agar ko`payuvchi 1 ga teng bo`lsa, u holda ko`paytma ko`paytiruvchiga teng bo`ladi. 1xa=a keyin 1ga ko`paytirish qoidasi bilan tanishtiriladi: agar ko`paytiruvchi 1 ga teng bo`lsa, ko`paytma ko`payuvchiga teng bo`ladi. ax1=a bo`linuchiga teng bo`lgan songa bo`lish (4:4=1), bo`lishning aniq ma'nosi asosida ochib beriladi; Birga bo`lish ko`paytirish va bo`lish orasidagi bog`lanish asosida kiritiladi; 1x4=4 dan 4:1=4
10 ni ko`paytirishda (10x2=20) hisoblash usulidan foydalaniladi, 10 ni 2 ga ko`paytirish uchun 1 o`nlikni 2 ga ko`paytirish mumkin, natijada 2 o`nlik yoki 20 hosil bo`ladi. 10 ga ko`paytirganda o`rin almashtirish xossasidan foydalaniladi. Bo`lishda ko`paytirish va bo`lish orasidagi bog`lanishga asoslanadi. Masalan, 20:2=10, 20:10=2. 20=10x2, 20=2x10.
Dostları ilə paylaş: |