12-mavzu. Noinersial sanoq sistemalaridagi harakat
Reja:
1.Noinertsiyal sanoq sistemasi.
2.Inertsiya kuchlari.
3.Tekis aylanayotgan sanoq sistemasi.
4.Markazdan qochma kuch.
5.Koriolis kuchi.
I. Tekis va to’g’ri chiziqli (ya’ni inertsiyasi bilan) harakatlanayotgan (yulduzga nisbatan) sanoq sistemasi inertsiyal sanoq sistemasi bo’ladi. Agar biron inertsiyal sanoq sistema boshka shunday sistemaga nisbatan tezlanish bilan harakatlansa u xolda bu sistema noinertsiyal sanoq sistema bo’ladi.
Nyuton qonunlari fakat inertsiyal sanoq sistemalarida urinlidir. Noinertsiyal sistemalarda bu qonunlar urinli emas.
Masalan, tekis va to’g’ri chiziqli harakat kilayotgan absolyut sillik vagonda m massali shar va bir kuzatuvchi turgan bulsin. Ikkinchi kuzatuvchi Yerda vagon utadigan joy yakinida turibdi. Demak, ikkala kuzatuvchi xam inertsiyal sanoq sistemalari bilan boglangan. Endi Yerdagi kuzatuvchi oldidan o’tish paytida vagon tezlanish bilan harakatlana boshlasa, u noinertsiyal sistema bo’lib koladi. B unda vagondagi shar vagon tezlanishiga teng tezlanish bilan qarama-qarshi harakatlanadi.
Bunda kuzatuvchilar uchun sharni harakatini kuraylik.
1. Yerdagi kuzatuvchi uchun shar inertsiya qonuniga buysunib tekis to’g’ri chiziqli harakatini davom ettiradi.
2. Vagondagi kuzatuvchiga shar kuch ta’sirisiz harakatga kelishi ko’rinadi. SHar - ao tezlanish oladi. Kuzatuvchi shu tezlanishni yuzaga keltiruvchi kuchni axtarib topa olmaydi. Bu inertsiya qonuniga ziddir.
Yuqoridagi kelishmovchilikni inertsiya kuchlari tushunchasini kiritish bilan bartaraf kilamiz: sharni tezlanishi vagondagi jismga boshka jismlarni ta’siri tufayli emas, balki vagonni Yerdagi kuzatuvchiga nisbatan tezlanuvchan harakati tufayli vujudga keladi. SHuning uchun noinertsiyal sanoq sistemadagi jismga ta’sir etuvchi bunday kuchlarni (Nyuton kuchlaridan fark qilish uchun) inertsiya kuchlari deyiladi. Bu kuchlarni jismlarga ta’siri xam Nyuton kuchlarinikidek bo’ladi. Demak vagondagi shar inertsiya kuchi Fi = - m ao ta’sirida harakatga keladi. SHuning uchun noinertsiyal sanoq sistemalarida jismga ta’sir etuvchi kuchlar Fn va Fi kuchlarni yig’indisi deb karash kerak
ma' = ∑ Fn + Fi
yoki
ma' = ∑ Fn - m ao
Bu Yerda a' noinertsiyal sanoq sistemadagi jismni barcha kuchlar ta’sirida olgan tezlanishidir.
SHunday qilib: 1. Inertsiya kuchlari fakat noinertsiyal sanoq sistemadagina ta’sir kiladi.
2.Inertsiya kuchlari odatdagi Nyuton kuchlaridan fark qilib, ularni yuzaga kelish sabablarini jismlarni uzaro taxsiridan chikarib bulmaydi.
3. Inertsiya kuchlari uchun Nyuton III-qonunini kullab bulmaydi.
Ilgarilanma harkatda inersiya kuchlarining namoyon bo’lishi quyidagi rasmda ko’rsatilgan45
Tekis aylanma harakat kilayotgan sistemaning xar bir nuqtasi markazga intilma kuch ta’sirida bo’lib, u bilan bog’liq sanoq sistemasi noinertsiyal sistemani hosil kiladi. Tezlanuvchan harakat kiluvchi ushbu sistemadagi inertsiya kuchini kuraylik. Massa markazidan utgan kuzgalmas uk atrofida o’zgarmas burchak tezlik bilan aylanayotgan disk olaylik. Disk bilan birgalikda uning markaziga rezina ip bilan boglangan shar x am aylanma harakat qilishi mumkin. Tinch xolatda bo’lgan disk ustidagi shar aylanish o’qidan ma’lum bir masofada joylashgan bulsin. Disk aylanma harakatga keltirilsa, sharchaga radius buylab markazga intilma kuchga teskari yunalishda markazdan kochma inertsiya kuchi ta’sir qilib rezinani chuzadi. Bu kuch bilan rezinaning elastilik kuchi tenglashganda sharchaning siljishi tuxtaydi. Bu xolatdagi sharchaning chiziqli tezligi v bulsa, markazdan kochma inertsiya kuchi
.
Koriolis kuchining namoyon bo’lishi46:
SHunday qilib ω burchak tezlik bilan aylanuvchi xar qanday sistema noinertsiyal sanoq sistemasini hosil kiladi. Bu sistemada joylashgan jismlarga markazdan kochma inertsiya kuchlari ta’sir kiladi. Bunday kuchlar ta’sirida aylanayotgan diskdagi mayatnik muvozanat xolatidan ma’lum burchakka ogadi.
Agar jism noinertsiyal sanoq sistemasiga nisbatan harakatlanayotgan bulsa unga kushimcha i nYertsion tabiatga ega bo’lgan Koriolis kuchi ta’sir kiladi.
Inertsiya markazidan utgan o’qqa nisbatan aylanma harakat kila oladigan disk ustida m massali sharcha v tezlik bilan OA radius buylab A nuqtaga tomon harakat kilsin. Diskni o’zgarmas burchak tezlik bilan harakatga keltirsak jism OA radius buylab emas, balki OV traektoriya buylab harakatlana boshlaydi. CHunki aylanayotgan diskning xar bir nuqtasi bilan bog’liq sanoq sistemasi inertsiyal sistema bo’lib, bu nuqtalarning chiziqli tezliklari mikdor va yunalish jixatdan uzgarib boradi. Bu uzgarish nuqtalarning tezlanish bilan harakat kilayotganini bildiradi.
Bunda xarakalanayotgan K' sistemada sharchaning tezlanishi umumiy xolda a' = a - ao + an + ak (1) bo’ladi. a' - K' sistemaga nisbatan sharchani tezlanishi, an - normal tezlanish, ao - ilgarilanma siljishdagi tezlanish, ak = 2 v ω Koriolis tezlanishi deyiladi. Uni yuzaga kelish sababi: diskni aylanishi natijasida jism OV egrirok chiziq buyicha siljiydi va uni diskga nisbatan tezligi v uz yunalishini uzgartadi. Bunda guyo jismga v tezlikka tik bolgan Fk Koriolis kuchi ta’sir kilayotgandek bo’ladi. SHarchaga ta’sir etuvchi kuchlar
m a' = m a - m ao + m ω2 r + 2mvω bo’ladi.
Bu noinertsiyal sanoq sistemasidagi dinamikani asosiy tenglamasidir.
Yoki ma' = F + Fin + Fmki + Fkor (2)
bu Yerda Fin = - mao' - noinertsiyal sanoq sistemasini ilgarilanma harakatiga asoslangan inertsiya kuchi; Fmki = mω2r - markazdan kuchirma inertsiya kuchi,
Fkor = 2 mvω yoki Fkor = 2 m [v • ω ] (3)
Koriolis kuchidir.
uz o’qi atrofida aylanishi boshka ko’pgina effektlarda xam namoyon bo’ladi. Masalan Meksika kurfazidan Floridaga tomon kuchli oqimni Koriolis kuchi burib AmYerika kirgoklaridan uzoklashtirib Atlantikaga undan Barents dengizga olib chikadi. Ekvatordan issik xavo kutarilib kutbga harakatlanadi va yuqori bosimli subtropik oblastni tashqil etadi va x.k (3) ifodada v va ω lar uzaro tik bo’lganda (v.|.ω ) Fkor maksimal qiymatga ega bo’ladi. Agar v || ω bulsa Fkor = 0 bo’lishi ma’lum. Umumiy xolda v va ω lar uzaro burchak hosil kilsa, Fkor ning qiymati ikki vektorning vektor ko’paytmasi xossasiga asosan
Fkor = 2 mvω sinα (4) bo’ladi.
Markazdan qochma kuchni o’rganish uchun mo’ljallangan mashina47,
Yerni uz o’qi atrofida sutkalik aylanishi unga nisbatan tinch yoki harakatlanyotgan jismlarga Fm.k markazdan kochma v Bu kuch juda kichik, ammo uzok davom etib tursa sezilarli bo’ladi. Masalan, shimoliy yarim shardagi daryolarni ung soxillari yuviladi. Temir yullarni ung tomonlari yeyiladi, shimolga karab otilgan snaryad shimoliy yarim sharda sharkka, janubga otilgani esa garbga ogadi, yuqoridan Yerkin tushayotgan jism sharkka ogadi. Fuko mayatnigini tebranish tekisligi aylanadi. Uni kuraylik : masalan, Yerni shimoliy kutbi ustida mayatnik uzun aylana osmaga ilingan. Uni tebrantirsak og’irlik kuchi va taranglik kuch ta’siri ostida bitta turgun tekislikda tebranish kerak. Yer esa uni ostida aylanadi. Mayatnikni tebranish tekisligini Yer sirtiga proektsiyasi kutbda Yerni aylanish yunalishiga qarama-qarshi yunalishda 1 soatda 15o tezlik bilan buriladi.
Yerni a Fkor Koriolis kuchlari orqali ta’sir kiladi. Xususan, jismning og’irlik kuchi yoki Yerkin tushish tezlanishi g - ning Yerning turli goegrafik kengliklardagi qiymatlarini farki Fm.k bilan aniqlanadi. Jism kutbda bulsa, u fakat tortishish kuchi ta’sirida bo’ladi, chunki
Fm.k = 0, ya’ni r = mgk = γ • (MYer • m) / Rk2
Bunda
qutbdagi erkin tushish tezlanishidir.
Agar jism ekvatorda joylashgan bulsa Ftor bilan Fm.k lar qarama-qarshi yunalishda bo’lib, jism ogirligi kamayadi.
an - ekvatordagi markazga intilma tezlanish,
Re = 6378 km Yerning ekvatorial radiusidir.
ekanini xisobga olsak ekvatordagi Yerkin tushish tezlanish
bo’ladi.
Ixtiyoriy φ geografik kenglikdagi normal tezlanish
tenglama bilan aniqlanadi. Demak, erkin tushish tezlanishi kutbdagiga karaganda ekvatorda kichik bo’ladi.
Dostları ilə paylaş: |