38
39
48.
Funksiya grafigiga abssissasi a)
x
0
=
1;
b)
x
0
= –2; d)
x
0
= 0 bo‘lgan
nuqtada o‘tkazilgan normal tenglamasini toping:
1)
f
(
x
)
=
3
x
2
–
5
x
+1;
2)
f
(
x
)
=
3
x–
40;
3)
f
(
x
)
=
7;
4)
f
(
x
)
=x
3
–
10
x
;
5)
f
(
x
)
=e
x
;
6)
f
(
x
)=12
x
;
7)
f
(
x
)
=
sin
x
;
8)
f
(
x
)
=
cos
x
;
9)
f
(
x
)
=
cos
x –
sin
x
;
10)
f
(
x
)
=
e
π
x
;
11)
f
(
x
)
=x
·cos
x
; 12)
f
(
x
)
=x ∙
sin
x
.
!
Nazorat ishi namunasi
I variant
1.
f
(
x
)=
x
3
+2
x
2
–5
x
+3 funksiya uchun
x
0
=2 va Δ
x
=0,1 bo‘lganda
funksiya orttirmasining argument orttirmasiga nisbatini toping.
2.
f
(
x
)= –8
x
2
+4
x
+1 funksiyaning
x
0
= –3 nuqtadagi hosilasini hisoblang.
3.
f
(
x
)=
x
3
–7
x
2
+8
x
–5 funksiya grafigiga
x
0
= –4 abssissali nuqtada
o‘tkazilgan urinma teng lamasini yozing.
4. Moddiy nuqta
s
(
t
)
=
8
t
2
–
5
t+
6 qonuniyat bilan harakatlanmoqda.
Agar
t
– sekund,
s
–
metrlarda o‘lchanadigan bo‘lsa, nuqtaning
t
0
=
8 se-
kunddagi oniy tezligini toping.
5. Ko‘paytmaning hosilasini toping: (3
x
2
–5
x
+4) ·
e
x
.
II variant
1. Bo‘linmaning hosilasini toping:
2
5
6
1
x
x
x
−
+
+
.
2. Murakkab funksiyaning hosilasini toping: ctg
15
x.
3.
( )
f x
x x
=
funksiyaning
0
1
16
x
=
nuqtadagi hosilasini hisoblang.
4.
( ) ln(
1)
f x
x
=
+
funksiya grafigiga
x=
0 nuqtada o‘tkasilgan urinma
tenglamasini yozing.
5.
2
( ) 0,5
6 1
s t
t
t
=
− +
qonuniyati bilan harakatlanayotgan moddiy
nuqtaning
t
=16 sekunddagi oniy tezligini toping. (
t
– sekundda, s – metrlarda
o‘lchanadi).
38
39
15–17
MASALALAR YECHISH
49.
y=f
(
x
) funksiya uchun
x
0
va
x
nuqtalarga mos
h
va Δ
y
ni hisoblang:
1)
f
(
x
)=4
x
2
–3
x
+2,
x
0
=1,
x
=1,01; 2)
f
(
x
)=(
x
+1)
3
,
x
0
=0,
x
=0,1.
50.
Agar
x
0
= 3 va Δ
x
= 0,03 bo‘lsa, berilgan funksiyalar uchun: a) funksiya
orttirmasini; b) funksiya orttirmasining argument orttirmasiga nisbatini
toping:
1)
f
(
x
)=7
x
– 5; 2)
f
(
x
)
=
2
x
2
–
3
x
; 3)
f
(
x
)
=x
3
+
2; 4)
f
(
x
)
=x
3
+
4
x.
51.
Agar
x
0
=
2 va Δ
x
=0,01 bo‘lsa, berilgan funksiyalar uchun: a) funk siya
orttirmasini; b) funksiya orttirmasining argument orttirmasiga nisbatini
toping:
1)
f
(
x
)
=
– 4
x+
3;
2)
f
(
x
)
=
–8; 3)
f
(
x
)
=x
2
+
10
x
;
4)
f
(
x
)
=x
3
–10
.
52.
x
→
0 bo‘lsa, funksiya qaysi songa intiladi:
1)
f
(
x
)=
x
3
–2
x
2
+3
x
+4;
2)
f
(
x
)=
x
5
–6
x
4
+8
x
–7;
3)
f
(
x
)=(
x
2
–5
x
+1)(
x
3
–7
x
2
–11
x
+6);
4)
f
(
x
)=
2
2
19
7
28
x
x
x
x
− −
+
−
;
5)
f
(
x
)=
3
3
2
8
1
x
x
x
x
x
−
+
+ +
?
53.
Funksiyaning hosilasini toping:
1)
y=
17
x
;
2)
y=
29
x–
3;
3)
y=–
15;
4)
y=
16
x
2
–3
x
;
5)
y=–
5
x+
40;
6)
y=
18
x–x
2
;
7)
y=x
2
+
15
x
;
8)
y=
16
x
3
+
5
x
2
–
2
x+
14;
9)
y
=3
x
3
+2
x
2
+
x.
54.
Funksiyaning hosilasini: a)
x =
–3;
b)
x =
1,1; c)
x =
0,4; d)
x = –
0,2
nuqtalarda hisoblang:
1)
y
= 1 5
x
; 2)
y
=9
x
+3; 3)
y
=–20;
4 )
y
= 5
x
2
+
x
;
5)
y
=–8
x
+4; 6)
y
=8
x
–
x
2
; 7)
y
=
x
2
+25
x
; 8)
y
=
x
3
+5
x
2
–2
x
+4.
55.
y= f
(
x
) funksiya hosilasini ta‘rifga ko‘ra toping:
1)
( )
5
3
2
2
+
+
=
x
x
x
f
;
3*)
( )
x
x
x
f
1
+
=
;
2)
( ) (
)
3
2
+
=
x
x
f
;
4*)
2
1
( )
x
f x
x
+
=
.
40
41
56.
y
=
( )
x
f
funksiyaning
0
x
nuqtadagi hosilasini toping:
1)
f
(
x
)=4
x
3
+ 3
x
2
+2
x
+1,
x
0
=1
;
2)
( )
3
0
1
sin 22 ,
1
3
f x
x
x
=
+
°
= −
x
0
=–1
;
3)
( ) (
)
(
)
0
2 1
1 ,
4
f x
x
x
x
=
+
−
=
x
0
=4
; 4)
( )
3
0
2
1,
3
1
x
f x
x
x
−
=
= −
+
x
0
=–3
.
57.
Moddiy nuqta
5
3
4
)
(
3
+
−
=
t
t
t
s
qonuniyat bilan harakatlanmoqda
(
s
metrda,
t
– sekundda). Moddiy nuqtaning 2-sekunddagi tezligini
toping.
58.
Funksiyaning hosilasini toping:
1)
x
x
y
2
1
+
=
;
2)
3
3
2
x
x
y
+
=
;
3*)
x
x
tg
x
x
y
3
5
log
−
⋅
+
=
tg
x
–log
3
x
;
4)
(
)
3
3
2
+
=
x
y
;
5*)
y = x
·ln
x
·(
x
+1);
6)
(
)(
)
2
−
+
=
x
x
x
y
;
7)
x
x
y
sin
2
+
=
; 8)
y
=10
x
+log
2
5+cos15°;
9)
x
y
x
sin
3
⋅
=
−
;
10*)
y
=tg
x
·cos
x
+7
x
·
x
7
;
11)
( )
3
8
4
1
2
4
+
−
=
x
x
x
f
; 12)
( )
5
sin
2
2
+
−
=
x
x
x
f
;
13)
10
( )
80
f x
x
x
=
−
; 14)
2
( ) 8
ln 2
x
f x
x
=
−
.
59.
Funksiya hosilasining
x
0
nuqtadagi qiymatini hisoblang:
1)
( )
0
,
cos
1
0
=
=
x
x
x
f
x
0
= 0; 2)
f
(
x
)=(
x
2
+3
x
)ln
x
,
x
0
=1;
3)
2
arctg
( )
1
x
f x
x
=
+
,
x
0
= 1; 4)
f
(
x
)=e
x
(
x
–ln2),
x
0
=ln2.
60*.
0
)
('
>
x
f
tengsizlikni yeching:
1)
f
(
x
) =
x
·ln27–3
x
; 2)
( )
x
x
x
f
2
sin
−
=
;
61.
Moddiy nuqta
t
t
t
t
s
2
2
3
3
1
)
(
2
3
+
−
=
qonuniyat bilan harakatlanmoqda.
Moddiy nuqtaning tezligi qachon nolga teng bo‘ladi? Buning ma’nosi nima?
40
41
62.
Hosilani toping: 1)
y=
x
x
x
+
−
4
5
; 2)
y=
x
x
−
2
1
; 3)
y=
5
4
x
x
+
.
63.
Moddiy nuqtaning
t
0
vaqtdagi tezligini toping:
1)
t
t
t
t
x
+
−
=
3
4
2
)
(
,
5
0
−
=
t
; 2)
t
t
t
t
x
−
+
−
=
2
5
)
(
,
t
0
= 4.
Hosilani toping (
64–66
):
64.
1)
y
= (
x
+2)(
x
2
–5
x
); 2)
8
3
2
+
−
=
x
x
x
y
; 3)
4
3
(
)(
5 )
y
x
x x
x
=
+
−
;
4)
y =
2
x
3
+4
x
2
+5
x
; 5)
14
14
x
y
x
=
−
; 6)
2
7
12
2019
y
x
x
=
+
+
.
65*.
1)
1
10
8
−
=
x
x
y
x
10
; 2)
7
1
5
3
+
+
+
=
x
x
x
y
; 3)
y
=(
x
10
+
x
–10
)(
x
8
+
x
–8
).
66*.
1)
y
x
x
x
=
⋅
3 sin
cos
;
2)
)
sin
(cos
5
x
x
e
y
x
−
=
;
3)
y=x
ctg
x
; 4)
2
ln
x
y
x
=
.
67*.
Hosilani
x
0
nuqtada hisoblang:
1)
5 1
( )
13 5
x
f x
x
+
=
−
,
x
0
= –2; 2)
f
(
x
)=ctg
x–
2
x+
2,
0
4
x
−π
=
;
3)
)
1
(lg
)
(
2
−
=
x
x
x
f
,
1
0
=
x
; 4)
1
( ) ctg
ln
20
f x
x
x
=
−
,
x
0
=1.
68*.
Murakkab funksiyaning hosilasini toping:
1)
x
2
·sin
x
;
2) log
15
cos
x
;
3) lnctg
x
;
4) tg
35
x
;
5)
e
ctg
x
;
6)
23
cos
x
;
7) 35
sin
x
;
8) (
x
2
–10
x
+7)lncos
x
;
9)
5
6
4
x
x
x
e
−
+
; 10)
e
–3
x
(
x
4
–3
x
2
+2); 11) lntg
x
;
12)
x
x
e
x
3
2
7
1
+
+
; 13)
e
5
x
(
x
5
+8
x
+11);
14) lncos2
x
.
|