?
Savol va topshiriqlar
1. Funksiyaning o‘sish va kamayish oraliqlari qanday topiladi?
2. Funksiyaning statsionar nuqtasiga ta‘rif bering.
3. Funksiyaning lokal maksimum va lokal minimumlari qanday
topiladi?
4. Funksiyaning eng katta va eng kichik qiymatlari qanday topiladi?
5. Hosila yordamida funksiyaning grafigini yasash bosqichlarini ayting
va bitta misolda tushuntiring.
6. Funksiyaning statsionar nuqtalari uning ekstremum nuqtalari bo‘lishi
shartmi? Misollar keltiring.
7.
4
2
1
1
( )
4
2
f x
x
x
=
−
funksiyani hosila yordamida tekshiring va grafigini
yasang.
46
47
Mashqlar
69.
Funksiyaning o‘sish va kamayish oraliqlarini toping:
1)
( )
x
x
f
9
2
−
=
; 2)
( )
8
2
1
−
=
x
x
f
;
3)
( )
3
27
f x
x
x
=
−
;
4)
( )
x
x
x
f
1
−
=
; 5)
4
2
)
(
2
+
−
=
x
x
x
f
; 6)
( )
(
)
6
2
−
=
x
x
x
f
;
7)
( )
3
2
2
−
+
−
=
x
x
x
f
; 8)
( )
2
1
x
x
f
=
; 9)
( )
2
4
2
x
x
x
f
−
=
;
10)
( )
4
3
3
8
16
f x
x
x
=
−
+
; 11)
( )
2
1
1
x
x
f
+
=
; 12)
( )
x
x
f
sin
=
;
13)
x
x
f
cos
)
(
=
; 14)
f
(
x
)=tg
x
;
15*)
( )
x
x
x
f
2
cos
2
sin
+
=
.
70.
Funksiyaning statsionar nuqtalarini toping:
1)
( )
1
3
2
2
+
−
=
x
x
x
f
; 2)
( )
3
3
1
9
x
x
x
f
−
=
;
3*)
( )
1
−
=
x
x
f
;
4)
( )
2
x
x
f
=
;
5)
( )
x
x
x
f
5
8
3
+
=
;
6)
( )
4
3
−
=
x
x
f
;
7*)
( )
1
+
=
x
x
f
;
8)
( )
6
3
2
2
3
−
+
=
x
x
x
f
; 9)
( )
4
2
8
3
x
x
x
f
−
+
=
.
71.
Funksiyaning lokal maksimum va lokal minimumlarini toping:
1)
( )
4
2
2
1
x
x
x
f
−
=
; 2)
( ) (
)
8
4
−
=
x
x
f
; 3)
( )
3
2
2
3
4
x
x
x
f
−
−
=
;
4)
( )
5
5
x
x
x
f
+
=
; 5)
( )
3
2
2
3
4
−
+
−
=
x
x
x
x
f
; 6)
f
(
x
)=3tg
x
;
7)
f
(
x
) = 2sin
x
+ 3; 8)
f
(
x
) = –5cos
x
–7; 9)
f
(
x
)=
x
4
–x
3
+
4.
72.
Funksiyaning o‘sish va kamayish oraliqlarini toping:
1)
( )
3
27
f x
x
x
=
−
;
2*)
( )
1
3
2
+
=
x
x
x
f
;
3*)
( )
2
4
x
x
x
f
+
=
;
4)
f
(
x
) = 5 sin
x
+13; 5)
f
(
x
)=15cos
x
–7; 6)
f
(
x
) = –3tg
x
.
73.
Funksiyaning eng katta va eng kichik qiymatlarini toping:
1)
( )
3
8
2
4
+
−
=
x
x
x
f
,
x
∈
[
]
1
;
4
−
; 2)
( )
1
5
3
3
5
+
−
=
x
x
x
f
,
x
∈
[
]
2
;
2
−
;
3)
( )
1
+
=
x
x
x
f
,
x
∈
[ ]
2
;
1
; 4)
( )
8
5
6
3
2
3
+
−
−
=
x
x
x
x
f
,
x
∈
[
]
4
;
1
−
.
48
49
74.
Funksiyani tekshiring va grafigini yasang:
1)
;
2
9
6
2
3
−
+
−
=
x
x
x
y
2)
;
1
3
2
5
1
3
5
+
−
=
x
x
y
3)
4
3
4
15
y x
x
=
−
+
.
75*.
Funksiya hosilasining grafigiga qarab (25, 26-rasmlar), quyida gilarni
toping:
1) statsionar nuqtalarni;
2) o‘sish oraliqlarini;
3) kamayish oraliqlarini;
4) lokal maksimumlarini;
5) lokal minimumlarni.
25-rasm.
26-rasm.
48
49
!
Nazorat ishi namunasi
I variant
1.
Hosilani toping:
f
(
x
) = 20
x
3
+ 6
x
2
– 7
x
+ 3.
2.
f
(
x
) =
x
2
– 5
x
+ 4 va
( )
1
2
x
g x
x
+
=
−
bo‘lsa,
f
(
g
(3)) ni hisoblang.
3.
( )
3
2
5
7 1
f x
x
x
x
=
−
+
+
funksiya uchun quyidagilarni toping:
1) statsionar nuqtalarni;
2) o‘sish oraliqlarini;
3) kamayish oraliqlarini;
4) lokal maksimumlarini;
5) lokal minimumlarini.
4.
Hosilani toping: (3
x
+ 5)
3
+ sin
2
x.
5.
( )
1 3
f x
x
=
−
bo‘lsa
1
'
4
f
ni hisoblang.
II variant
1.
Hosilani toping:
f
(
x
) = 10
x
3
+16
x
2
+7
x
–3.
2.
f
(
x
) =
x
2
+6
x
–3 va
1
( )
2
x
g x
x
−
=
+
bo‘lsa,
f
(
g
(3)) ni hisoblang.
3.
f
(
x
) =
x
3
+2
x
2
–
x+
3 funksiya uchun quyidagilarni toping:
1) statsionar nuqtalarni;
2) o‘sish oraliqlarini;
3) kamayish oraliqlarini;
4) lokal maksimumlarini;
5) lokal minimumlarini.
4.
Hosilani toping: (2
x
– 6)
3
+ cos
2
x.
5.
( )
1 2
f x
x
=
−
bo‘lsa,
3
'
8
f
ni hisoblang.
50
51
22–25
GEOMETRIK, FIZIK, IQTISODIY MAZMUNLI
EKSTREMAL MASALALARNI YECHISHDA
DIFFERENSIAL HISOB USULLARI
Geometrik mazmunli masalalar
1-masala.
To‘g‘ri to‘rtburchak shaklidagi yer maydoni atrofini 100 m
panjara bilan o‘rashmoqchi. Bu panjara eng ko‘pi bilan necha kvadrat mert
yer maydonini o‘rashga yetadi?
Yer maydonining eni
x
m va bo‘yi
y
m bo‘lsin (27-rasm).
Masala shartiga ko‘ra yer maydoni-
ning perimetri 2
x
+2
y
=100. Bundan
y
= 50–
x
. Yer maydonining yuzi
S
(
x
) =
xy
=
x
(50–
x
)=50
x
–
x
2
. Ma-
sala
S
(
x
) funksiyaning eng katta qiy-
matini topishga keltirildi. Avval
S
(
x
)
funksiyaning statsionar nuqtasini to-
pamiz:
S
ʹ(
x
)=50–2
x
=0, bundan
x
= 25.
(–
; 25) oraliqda
S
ʹ(
x
) > 0 va
(25; +
) oraliqda
S
ʹ(
x
) < 0 bo‘lgani uchun
S
(
x
) funksiya
x
=25 da eng kat-
ta qiymatga ega bo‘ladi va
S
(25)
=
625. Demak, 100 m panjara yordamida
eng ko‘pi bilan 625
m
2
yer maydonini o‘rash mumkin.
Javob:
625
m
2
.
▲
Umuman, perimetri berilgan barcha to‘g‘ri to‘rtburchaklar ichida yuzasi
eng kattasi kvadratdir.
2-masala.
Tomoni
a
cm bo‘lgan kvadrat shaklidagi kartondan usti
ochiq quti tayyorlashmoqchi. Bunda kartonning
uchlaridan bir xil kvadratchalar kesib olinadi.
Qutining hajmi eng katta bo‘lishi uchun uning
asos tomoni uzunligi necha santimetr bo‘lishi
kerak?
Kartonning uchlaridan bir xil kvad ratcha-
lar qirqib olinib, asosi
x
cm bo‘lgan ochiq quti
yasal gan, desak (28-rasm), kesib olingan kvadrat-
cha ning to moni
2
x
a
−
cm bo‘ladi. Shuning uchun
ochiq qutining hajmi
3
2
( )
2
2
2
a x
x
ax
V x
x x
−
=
⋅ ⋅ = −
+
x
m
y
m
27-rasm.
28-rasm.
50
51
3
2
( )
2
2
2
a x
x
ax
V x
x x
−
=
⋅ ⋅ = −
+
cm
3
. Demak, berilgan masala
3
2
( )
2
2
x
ax
V x
= −
+
funk si yaning
[0;
a
] kesmadagi eng katta qiymatini topishga keldi.
V
(
x
) funksiyaning
statsionar nuqtalarini topamiz:
2
3
( )
0
2
V x
x
ax
′
= −
+
=
.
Bu yerdan
0
1
=
x
,
a
x
3
2
2
=
statsionar nuqtalar topiladi. Ravshanki,
3
2
2
3
27
V
a
a
=
va
( ) ( )
0
0
3
2
=
=
>
a
V
V
a
V
. Demak,
( )
x
V
ning
[ ]
a
;
0
kesmadagi eng katta qiymati
3
2
27
a
bo‘ladi.
Javob:
ochiq qutining asos tomoni uzunligi
a
x
3
2
=
cm.
▲
Dostları ilə paylaş: |