ƏDƏBIYYAT
1.
Məmmədоv Е. və b. Еnsiklоpеdiya, «Kimya». Bakı: Şərq-Qərb, 2008
2.
Səmədоva Ə.C., Piriyеv I.T. və b. Manqan artıqlığı qida şəraitində adaptasiyada balqabaq
bitkisinin оrqanlarında minеral еlеmеntlərin və azоtlu maddələrin paylanma dinamikası //
AMЕA-nın «Xəbərlər»i, 2010, 65, N 1-2, 57-64.
3.
Битюцкий Н.И. Микроэлементы и растение. СПб: СПГУ, 1999, 230 с.
4.
Битюцкий Н.П., Магницкий С.В., Коробейникова Л.П., Лукина Е.И. и др. / 4-ый
съезд Общества Физиологов Раст. Межд. Конф. «Физиология растений – наука 3-го
тысячелетия». М.: 1999, Тез. докл. Т. 1, с. 146-147
5.
Черникова А.А. и др. // Физиология растений, 2006, т. 53, №6, с. 903-909
6.
Alan S. et al. // РЖ «Физиология и биохимия растений», 2004, №4, 87
7.
Guartin V.M.S. et al. Plant Nutr., 2001, v. 24, No 1, p. 175-189
8.
Kappova A., Pirkl J., Kalina I. Stanoveni popolovin rostlinem materialu presonumi
expeditivnimi metodami. Vedeske Prase Vuzkunneho ustavi vuroby. SSLV Vraze-Ruzum,
1955.
9.
Larson E.J., Pecoraro X.L. Marganes redox enzymes. New York: VCH Publ., 1992
10.
Lidon F. Plant Nutr., 2001, v. 24, No 1, p. 61-74
11.
Lidon F.C. // РЖ «Физиология и биохимия растений», 2002, №5, 33
12.
Lidon F.C. // РЖ «Физиология и биохимия растений», 2003, №4, 125
13.
McLeod K.W., Ciravolo T.G. Sensitivity of water tupelo (Nyssa aquatica) and balk
AMEA Botanika İnstitutunun elmi əsərləri, 2012- ci il, XXXII cild
cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated
conditions // Environ. Toxicol. and Chem., 2003, v. 22, No 12, p. 2948-2951
14.
Shi Q-H., Zhu Z., Li J, Qian Q-Q. Combined effects of excess Mn and low pH on
axidative stress and antioxidant enzymes in cucumber roots // Agr. Sci. China, 2006, v. 5, No,
10, p. 767-772
15.
Xi X.-L., Shi L.-Y. et al. // РЖ «Физиология и биохимия растений», 2007, №9, 85
16.
Xu G-D., Lin P., Xu X-J., Ni J-Y. // РЖ «Физиология и биохимия растений», 2005,
№1, 126
РЕЗЮМЕ
ВЛИЯНИЕ МАРГАНЦА НА РОСТ РАСТЕНИЙ, ВЫРАЩЕННЫХ
ПРИ РАЗЛИЧНЫХ рН ПИТАТЕЛЬНОЙ СРЕДЫ, И РАСПРЕДЕЛЕНИЕ
МИНЕРАЛЬНЫХ ЭЛЕМЕНТОВ (Р, К, Са) В ИХ ОРГАНАХ
Пириев И.Т., Аннагиева М.А., Самедова А.Д.,
Салаева Х.Л., Ширвани Т.С.
Институт ботаники НАН Азербайджана
Изучены ростовые параметры и распределение некоторых основных питательных
в различных органах растений тыквы, выращенных в питательной среде Кнопа, при
различных рН при длительном воздействии марганца. Проведен мониторинг накопления
в динамике биомассы (сырой и сухой) подземными и в зависимости от длительности (7,
14 и 21 день) воздействия металлом (100
М) и рН выращиваемой среды (4,3 и 6,0),
динамики накопления и распределения по органам фосфора, калия и кальция.
Выявлено, что корни опытных растений тыквы по всем исследованным
параметрам находились в более привилегированном состоянии по сравнению с другими
органами под влиянием взятой дозы марганца, особенно в кислой среде.
Ключевые слова: тыква, биомасса, корен, распределение макроэлементов, кислая
среда, марганец, надземнымые органы
SUMMARY
MANGANESE EFFECT ON GROWTH OF PLANTS GROWN UNDER DIFFERENT
pH OF NUTRIENT SOLUTION AND DISTRIBUTION OF SOME NUTRIENT
ELEMENTS (P, K, Ca) WITHIN THEIR ORGANS
Piriyev I.T., Annagiyeva M.A., Samedova A.J.,
Salayeva Kh.L., Shirvani T.S.
Institute of Botany of the ANAS
The growth parameters and some major macronutrients distribution in different organs of
pumpkin plants grown in Knop nutrient solutions with various medium pH under long-term
action of manganese have been studied. A monitoring of accumulation in dynamics of
biomass (dry and fresh) in under- and over-ground organs depending on duration (7, 14 and
21 days) of Mn (100
M) action and pH of media (4.3 and 6.0), dynamics of accumulation and
distribution in organs Phosphorous, Potassium and Calcium was carried out.
It was revealed that roots of experimental pumpkin plants under conditions of Mn excess were
in more privileged state by all tested parameters as compared with over-ground organs,
especially in acid media.
Key words: pumpkin, biomass, root, distribution of microelements, sour media, manganese,
over-ground organs
AMEA Botanika İnstitutunun elmi əsərləri, 2012- ci il, XXXII cild
EFFECTS OF COLD STRESS ON PROLINE AND SOLUBLE CARBOHYDRATES
IN TWO CHICKPEA CULTIVARS
1
Saghfi S.E.,
1
Gasimov N.A.,
2
Eivazi A.R.,
1
Mammadova G.S.
1. Department of plant physiology, Baku State University, Baku, Azerbaijan
2. Agricultural Research Center, West Azerbaijan, Urmia, Iran
E- mail: S.Saghfi@yahoo.com- Baku AZ-1148, Z.Khalilov street,23
The present study evaluates the mechanism of cold stress tolerance in two chickpea cultivars
of Flip 93-174 (resistant) and Flip92-169 (susceptible) using a completely randomized
factorial experiment with 3 replications. Results of variance analysis showed that Proline
increased in leaves exposed to cold stress in both cultivars during the treatment period. This
increase was more prominent for the resistant cultivar as compared to the susceptible
cultivar. The same holds for leaf soluble carbohydrates, Glucose, Ramnose, mannose, and
Fructan for the resistant cultivar.
Key words: cold stress, chickpea, Proline, soluble carbohydrates
The growing number of populations and high expenses of animal protein, together with lower
level of cereal protein (9-12%), have drawn public attention towards using grains as a source
of human protein (12). Grains are the most important source of nutrient protein, after cereals,
in human. Grains are essential for food provision of human beings. They are planted all over
the world and different crop species of them are compatible with different climates. Grains are
specially favored in Africa (9). Grain beans with 18-32% protein play an essential role in
providing human protein needs (4). Chickpea are especially important for human nutrition, for
their high level of plant protein. Biological value of this protein is for its essential amino acid
content, especially Lysine. Amino acids like Leucine, Arginine, and Methionine are found
abundantly in grains, compared to cereals and even meat (1). Studies indicate that a proper
combination of grains protein and cereals can help eliminate malnutrition and lack of amino
acids (8). The level of protein in gain seeds is two or three times more than starch and
glandular plants. Moreover, grains are rich with calcium, iron and contain little amounts of
Carotene, Riboflavin, Ascorbic acid, Niacin (14). On the other hand, low temperature is a
non-living factor restricting growth, production and dispersion of plants. Most plants are
exposed to temperature changes, including cyclical and seasonal changes, in their range of
natural growth habits, which may restrict their respiration, photosynthesis and growth (2).
Low temperature reduces biosynthesis activity of plants and prevents their natural
physiological processes and may cause permanent damages leading finally to death (3).
Therefore, effects of cold stress on plant life are studiedand attempts are directed towards
increasing tolerance to cold in important crop plants. An important feature of plants in stress
conditions is the increase of carbohydrate accumulation. Carbohydrates increase inter-cellular
concentration and prevent water loss due to cold stress (5). Increase in freezing tolerance
during cold compatibility period is due to storage of soluble sugar in plants (6). Glucose,
Fructose, Ramnose, Mannose, Raffinose, Fructanare some common soluble carbohydrates in
the process of tolerance to cold in organic plants. In addition to preserving osmotic pressure
inside the cells, these sugars, through binding to two-layer lipid membrane, protect cellular
membrane from damages arising from water loss, freezing and phosphorylation of lipid
membranes (13). In other words, any increase in accumulation of soluble sugars in the cell,
promotes membrane stability against cold. Membrane stability is a prerequisite for making a
cell resistant to freezing. Another effect of soluble sugars is their acting as a nutritional
AMEA Botanika İnstitutunun elmi əsərləri, 2012- ci il, XXXII cild
substance which makes plants survive in low temperatures. The point is that, accumulation of
sugars in cold conditions, unlike what occurs in normal situations, doesn’t reduce
photosynthetic activity. Thus, activation of compatibility path to cold decreases plant
sensitivity to sugar accumulation and doesn’t prevent photosynthetic activity. This prolongs
the process of cellular senescence and cell death (10). On the other side, increase in Proline
accumulation leads to increase tolerance to higher levels of cold stress (7). Therefore,
measuring Proline and soluble carbohydrates of the leaves during cold treatment period is of
high importance for identifying their roles in cold tolerance. The present study investigates
physiological responses of two chickpea cultivars Flip 93-174 (resistant to cold) and Flip 92-
169 (susceptible to cold) to short-term cold stress and the effectiveness of Proline and soluble
carbohydrates in invoking tolerance to cold stress in chickpea.
METHODS AND MATERIALS
Growth conditions and cold treatment: 10 seeds of chickpea were planted in prepared pots in
a growth chamber at 22° C. In the 4-leaf stage, half of the pots were transferred to a similar
growth chamber with 3° C. The samples were gathered on days 2, 4, and 7.
Measurement of Proline: 0.2g leaf tissue was rubbed in 3.3% Sulfosalicylic 10 ml and the
resulting homogenies were then passed through a filter paper. The extract was centrifuged for
10 min at 4° C in the 4000rpm centrifuge machine (2000*g). The upper part was removed and
2 ml reagent nine hydrine and 2 ml glacial ascetic acid were added to 2 ml extracts in capped
test tubes and was kept in water bath for about an hour. 4 ml Toluene was added to each tube
and mixed completely. When two separate phases were formed, the upper phase of Toluene
containing Proline amino acid was read at a wavelength of 520 nm (11).
Measurement of foliar soluble carbohydrates: 0.2 g of the sample was rubbed by 2 ml
phosphate sodium buffer (PH=7). The resulting homogenies were centrifuged for 20 min in
10000 rpm (13000*g). Then, 10µl of the supernatant was taken and 990µl distilled water was
added to it. After the color was stabilized, it was kept for 10-15 min at 27-30° C to measure
Ramnose, Glucose and mannose. Sample attractions were read at 480, 485, 490 nm
wavelengths (3).
Measurement of Fructan: 0.2 g frozen tissue was rubbed by 3 µl of phosphate sodium buffer
50 µl and the resulting homogenies were passed through a filter paper. 1ml of the solution
was mixed with 5ml of Anthrone 0.02% in 70% Sulfuric acid. It was, then, kept in water bath
100° C for 7.5 min. after cooling, sample attractions were read at a wavelength 625nm (5).
Statistical methods of the analysis: data were examined using a factorial experiment with a
completely randomized plot with three replications by the use of Minitab14 software. The
first factor was two cultivars of chickpea (Flip 93-174, Flip 92-169), the second factor was
cold treatment at two levels (3-22° C) and the third factor was sampling time at three levels
(days 2, 4 , and 7) after transference to cold growth chamber at 3° C.
RESULTS AND DISCUSSION
Results of variance analysis showed that the two cultivars under study were significant at 1%
considering Proline and foliar soluble carbohydrates, Glucose, Ramnose, Mannose and
Fructan. The level of Proline during cold treatment period shows linear increase in the
susceptible cultivar of chickpea (Flip 92-169). Also, increasing the period of cold treatment
leads to linear increase of the level of Proline in the resistant cultivar (Flip 93-174) and the
highest level of accumulation observed on day 7 of sampling was three times more than the
control plants. The level of Proline in the resistant cultivar (Flip 93-174) on days 2, 4, and 7
AMEA Botanika İnstitutunun elmi əsərləri, 2012- ci il, XXXII cild
increased to 0.8, 2.6, and 3.1 respectively. But the level of Proline accumulation on day 7 was
more in Flip 93-174 cultivar than Flip 92-169 cultivar (Fig1).
Fig 1. Effect of cold stress on proline levels in both tolerant and Sensitive cultivars of
Chickpea
Evaluation of the level of Glucose, Ramnose and Mannose in Flip 92-169 cultivar shows a
sudden increase of these sugars at the beginning of the cold stress period and their high
maintenance up to day 6, which decreases on day 7. It is assumed that increasing the period of
stress treatment in the susceptible cultivar (Flip 92-169) and decreasing chlorophyll ad energy
requirement, the plant provide sits needed energy by using the stored sugar (10). However,
increasing the period of stress treatment in the resistant cultivar (Flip 93-174) leads to linear
increase of Glucose, Ramnose, and Mannose.Any increase in the period leads to increase the
level of Fructan in both cultivars. But, maximum level of Frucatn accumulation on day 7 of
sampling in the susceptible cultivar was 62% and maximum level of Fructan accumulation on
day 4 of sampling in the resistant cultivar was 43%, compared to control plants (Fig2).
Fig 2.Effect of cold stress on soluble carbohydrates levels in both tolerant and sensitive
cultivars of chickpea
REFERENCES
1. Boyer, J. S, Plant productivity and environment //Science. 218. 1982.p .443- 448.
2.Dubois, M.,Hamilton, J. K., Rebes, P. A. and Smith, F. Colorimetric method for
determination of sugars and related substrates//Analytical Chemistry, 28.1956.p.350-356.
3.Galiba, G. In vitro adaptation for drought and cold hardiness in wheat// Plant Breeding
Reviews, 1994.p.115- 162.
4.Mcrae, F. J., D. W. Mccaffry and P. W. Matthews. Wintre crop variety sowing guide. State
of south wales. NSW Department of Primary Industries. 2005.p.84-86.
AMEA Botanika İnstitutunun elmi əsərləri, 2012- ci il, XXXII cild
5.Mcvicar, R.,S. Hartley and D. Goodwillie. Chickpea in Saskachewan. Saskachewan
Agriculture and food. http:// www. Agr. Gov. Sk. Ca/ docs/ crops/ pulses/ production-
information/ chickpea. 2005.
6.Miguelezfrade, M. M and J. B. Valenciano. Effect of sowing density on the yield and yield
components of spring-sown irrigated chickpea (Cicer arietinum L.) grown in Spain. New
Zealand Journal of crop and Horticultural Science. 2005.p.367- 371.
7.Maller, P. R., K. N. Mckay, and B. A. Jenks. Growing chickpea in the northern great plains.
Montana State University. 2002.p.134-137.
8.Muehlbauer. F. J. Food and grain legumes.. In Janick. J. E. Simon (eds.). New crops Wiley.
New York. 1993.p.256-265.
9. Navascortes, J. A., B. Hau, and R. M. Jimenezdiaz. Effect of sowing date, host cultivar, and
race of Fusarum oxysporum F. sp. Ciceris on development of Fusarium wilt of chickpea.
Phytopathology. 1998.p.1338-1346.
10.Owies, T., A. Hachum and M. Pala. Water use efficiency of winter-sown chickpea under
supplement irrigation in a Mediterranean environment. Agricultural water Management.
2004.p.163-179.
11.Ozdemir, S. and U. K. Karadavut. Comparison of the performance of autumn and spring
sowing of chickpea in a temperate region. Turkey Journal of Agriculture. 2003.p. 345-352.
12.Paul, M. J., Driscoll, S.P. and Lawlor, D. W. The effect of cooling on photosynthesis,
amounts of carbohydrate and assimilate export in sunflower// Journal of Experimental
Botany, 42. 1991.p.845- 852.
13.Yuanyuan, M., Yali, Z., Jiang, L. and Hongbo, S. Roles of plant soluble sugars and their
responses to plant cold stress// African Journal of Biotechnology, 8. 2009.p.145-153.
14.Zhu, J. Dong, C. H. and Zhu, J. K. Interplay between cold-responsive gene regulation,
metabolism and RNA processing during plant cold acclimation// Current Opinion in Plant
Biology, 10. 2007.p. 290-295.
AMEA Botanika İnstitutunun elmi əsərləri, 2012- ci il, XXXII cild
XÜLASƏ
İKİ SORT NOXUDDA SOYUQ STRESİNİN PROLİN VƏ
HƏLLOLAN KARBOHİDRATLARIN MİQDARINA TƏSİRİ
Saghfi S.E ., Qasımov N.A
1
., Eivazi A.R
2
., Məmmədova G.S
1
Tədqiqat obyekti kimi, noxudun soyuğa qarşı dözümlü olan sortu (Flip 93-174) və
soyuğa həssas olan (Flip92-169) sortundan istifadə edilmişdir. Nəticələr göstərir ki, soyuq
şəraitdə olan yarpaqların hər iki sortunda prolinin miqdarı artmışdır. Bu artım dözümlü sortda
həssas sorta nisbətən daha yüksək olmuşdur. Dözümlü sortun bu reaksiyası yarpaqdakı həll
olan karbohidratların artmasında da (qlükoza, ramnoza, mannoza və fruktoza) özünü
göstərmişdir.
Açar sözlər: soyuq stresi, noxud, prolin, həllolan karbohidratlar
РЕЗЮМЕ
ВОЗДЕЙСТВИЕ ХОЛОДНОГО СТРЕССА НА КОЛИЧЕСТВО ПРОЛИНА И
РАСТВОРИМЫХ УГЛЕВОДОВ В ДВУХ СОРТАХ ГОРОХА
Сагфи С.E., Касумов Н.А., Эйвази А.Р., Мамедова Г.С.
В качестве объекта исследования были использованы сорта гороха, устойчивые
(Flip 93-174) и чувствительные к холоду (Flip92-169). Результаты показывают, что в
листьях обоих сортов в холодных условиях количество пролина увеличывается. В
yстойчивом сорте это увеличение было существенным по сравнению с чувствительным
сортом. Такая реакция чувствительного сорта выявлено также в содержании
растворимых углеводов (глюкоза, рамноза, манноза и фруктоза) в листьях.
Ключевые слова: Холодный стресс, горох, пролин, растворимые углеводы
AMEA Botanika İnstitutunun elmi əsərləri, 2012- ci il, XXXII cild
UOT 581.9.
BIOMONITORING OF TRACE METALS AND AIR QUALITY IN BAKU CITY,
AZERBAIJAN, USING LIGUSTRUM JAPONICUM L. (OLEACEAE)
Youssef N.A., Gadjiyeva S.R., Gurbanov E.M.
Baku State University
Bio-monitoring of air quality in Baku City was investigated by analyzing Ligustrum
japonicum L. (Oleaceae) leaves samples from two sites of different anthropogenic activities in
addition to background site. The highest element concentrations have been found at sites of
high traffic following by industrial site, with exception of Cr having its peak at industrial site.
Variation in Pb, Cd, Cr, Fe and Cu contents between sites was observed due to different types
of activities. Traffic emissions were found to be the main source of heavy metal pollution in
the atmosphere of Baku. Lead and cadmium content was found to be the highest in highly
traffic density areas. The industrial part of the city was characterized by high Cr and Fe
contents.
Keywords: Heavy metals, Urban air pollution, Bio-indicators, Air quality, industries
Dostları ilə paylaş: |