3
1-
§
.
Loyiha hisob ishini bajarish namunasi
1-masala.
Limitlarni hisoblang.
a)
2
2
3
3 5
2
3
10
3
→−
−
−
+
+
lim
;
x
x
x
x
x
b)
2
5
5
4 6
3
7
9
→
−
−
+
+
lim
;
x
x
x
x
x
v)
1
5
2
8
3
→−
+ −
− −
lim
.
x
x
x
Yechish.
a)
2
2
3
3
3
3 5
2
0
3 2
1
2
1
5
3
10
3
0
3 3
1
3
1
8
→−
→−
→−
−
−
− +
+
+
=
=
= −
= −
+
+
+
+
+
(
)(
)
lim
lim
lim
.
(
)(
)
x
x
x
x
x
x
x
x
x
x
x
x
x
b)
2
5
5
3
5
4
5
4
6
3
4 6
3
3
7
9
7
9
1
→
→
−
−
−
−
=
=
= −
+
+
+
+
lim
lim
.
x
x
x
x
x
x
x
x
x
x
v)
(
)(
)(
)
(
)(
)(
)
1
1
5
2
5
2
8
3
5
2
0
0
8
3
8
3
8
3
5
2
→−
→−
+ −
+ +
− +
+ −
=
=
=
− −
− −
− +
+ +
lim
lim
x
x
x
x
x
x
x
x
x
x
(
)
(
)
(
)
(
)
1
1
1
5
4
8
3
1
8
3
8
3
3
2
5
2
8
9
5
2
1
5
2
→−
→−
→−
+ −
− +
+
− +
− +
=
= −
= −
+ +
− −
+ +
− +
+ +
(
)
(
)
lim
lim
lim
.
(
)
(
)
x
x
x
x
x
x
x
x
x
x
x
x
x
2-masala.
Limitlarni hisoblang.
a)
7
2
3
2
15
−
→
+
+
lim
;
x
x
x
x
b)
2
0
1
4
3
→
−
cos
lim
;
x
x
x
v)
0
1 3
2
→
+
ln(
)
lim
.
x
x
arctg x
Yechish.
a)
( )
7
7
2
3
2
3
1
1
1
2
15
2
15
−
−
→
→
+
+
=
+
−
=
+
+
lim
lim
x
x
x
x
x
x
x
x
84
2
15
84
84
15
12
2
15
2
42
2
15
12
1
2
15
→
→
+
−
+
+
+
→
−
+
=
=
=
+
lim
lim
lim
,
x
x
x
x
x
x
x
x
x
e
e
e
x
bu
yerda
1
1
→
+
=
lim
t
t
e
t
ikkinchi
ajoyib limidan va
=
x
y e
funksiyaning
uzluksizligidan foydalandik.
5
4-masala.
Berilgan funksiyani ko’rsatilgan
nuqtalarda uzluksizlikka
tekshiring.
1
2
1
2
5
1
2
3
−
=
+
=
=
( )
;
,
.
x
f x
x
x
Yechish.
1
2
=
x
nuqta uchun
1
2
2 0
2
2
5
1
5
1 0 1 1
−
−
→ −
→
=
+ =
+ = + =
lim
( )
lim(
)
;
x
x
x
x
f x
1
2
2 0
2
2
5
1
5
1
−
→ +
→
=
+ =
+ =
lim
( )
lim(
)
,
x
x
x
x
f x
ya’ni
1
2
=
x
nuqtada
( )
f x
funksiya 2-tur uzlulishga ega bo’ladi.
2
3
=
x
nuqta uchun
1
2
3 0
3
3
5
1
5 1 6
−
→ −
→
=
+ = + =
lim
( )
lim(
)
;
x
x
x
x
f x
1
2
3 0
3
3
5
1
5 1 6
−
→ +
→
=
+ = + =
lim
( )
lim(
)
,
x
x
x
x
f x
ya’ni
2
3
=
x
nuqtada
( )
f x
funksiya uzluksiz bo’ladi.
5-masala.
Berilgan funksiyalarni hosilalarini toping.
a)
3
7
4
4
3
2
5
9
=
−
+
+
+
;
y
x
x
x
x
b)
3
4
5
4
3
2
4
7
1
=
+
−
+
−
(
)
;
(
)
y
x
x
x
v)
3
7
2
6
=
cos
;
y tg x
x
g)
3
3
5
7
7
−
=
log (
)
;
sin
x
y
x
d)
(
)
5
3
=
−
arccos
sin(
)
.
x
y
x