İki vektorun fərqi elə bir vektordur ki, onun üzərinə çıxılan vektoru gəlsək azalan vektoru alarıq. İstənilən a və b vektoru üçün a-b=a+(-b) bərabərliyi doğrudur
VEKTORLARIN SKALYAR HASİLİ
İki vektorun skalyar hasili onların uzunluğu ilə aralarındakı bucağın kosinusunun hasilinə bərabərdir. Həmçinin iki vektorun skalyar hasili onların uyğun koordinatlarının hasili cəminə bərabərdir.
VEKTORUN KOORDİNATLARI
Bərabər vektorların uyğun koordinatları bərabərdir. Uyğun koordinatları bərabər olan vektorlar bərabərdir. İki və daha çox vektorun cəminin koordinatları onların uyğun koordinatları cəminə bərabərdir. Vektorun ədədə hasilinin hər bir koordinatı, uyğun koordinatın həmin ədədə hasilinə bərabərdir.
VEKTORLARIN TOPLANMASI
İki vektoru üçbucaq və paraleloqram qaydası ilə toplamaq olar. İstənilən a, b, və c vektoru üçün a+b=b+a kommutativlik və (a+b)+c=a+(b+c) assosiat
VEKTORUN İKİ KOLLİNİAR OLMAYAN VEKTORA AYRILIŞI
Əgər a və b vektorları kollineardırsa və a vektoru b-dən fərqlidirsə, onda elə k ədədi var ki, b=ka. Müstəvidə verilmiş istənilən vektoru kollinear olmayan iki vektorun ayrılışı şəklində göstərmək olar və bu ayrılış yeganədir.
VEKTORUN ƏDƏDƏ VURULMASI
Sıfırdan fərqli olan a vektorunun k ədədinə hasili elə b vektoruna deyilir ki, onun uzunluğu |b|=|k||a| olsun. b vektorunun istiqaməti isə k>0 olarsa a ilə eyni, k<0 olarsa a-nın əksinə olacaq.0>