I. Qatorlar haqida tushunchalar 1 Sonli qatorlar


Darajali qator quyidagi xossalarga ega



Yüklə 0,73 Mb.
səhifə8/14
tarix04.04.2023
ölçüsü0,73 Mb.
#93040
1   ...   4   5   6   7   8   9   10   11   ...   14
I. Qatorlar haqida tushunchalar 1 Sonli qatorlar

Darajali qator quyidagi xossalarga ega:
1.3.1-xossa :Agar darajali qator oraliqning barcha nuqtalarida uzoqlashuvchi bo`lmasa, u holda uning yig`indisi yaqinlashish sohasining har bir nuqtasida uzluksiz bo`ladi.
1.3.2-xossa: Agar x   da
a0 + a1(x-c) + a2(x-c)2 + ... + an(x-c)n + ... = ,
bo`lsa, darajali qatorni yaqinlashish sohasining ichki nuqtalarida hadma-had integrallash mumkin:

1.3.3-xossa: Agar x (c - R, c + R) , R > 0 da
a0 + a1(x - c) + a2(x - c)2 + ... + an(x - c)n + ... = ,
bo`lsa, darajali qatorni yaqinlashish sohasining ichki nuqtalarida hadma-had differensiallash mumkin, ya`ni
, x (c - R , c + R)
1.3.4-xossa: Agar ushbu
a0 + a1(x - c) + a2(x - c)2 + ... + an(x - c)n + ...
darajali qator oraliqning barcha nuqtalarida uzoqlashuvchi bo`lmasa, u holda buning yig`indisi yaqinlashish sohasining ichki nuqtalarida barcha yuqori tartibli hosilalarga ega bo`ladi. Shu bilan birga:
, , ,..., , ... bo`ladi.
Funktsiyani darajali qatorga yoyish. Teylor qatori.
f(x) funktsiyani birorta darajali qatorning yig`indisi ko`rinishida ifodalashga berilgan funktsiyani qatorga yoyish deb ataladi.
Faraz qilaylik, f(x) funktsiya biror (-R; R) oraliqda darajali qatorga yoyilgan bo`lsin:
f(x)=a0+a1(x-x0)+a2(x-x0)2+…+an(x-x0)n+ (1.3.13)
(1.3.13) qatorning koeffisiyentlari va x0 nuqtadagi hosilalarini f(x) funktsiyaning qiymatlari orqali ifodalaymiz. U holda, qatorning birinchi hadi f(x0) =x0 (1.3.13)
dan iborat bo`ladi.
f(x) funktsiya x0 nuqtada aniqlangan va shu nuqtada istalgan tartibli hosilaga ega ekanligini e`tiborga olib, ni topamiz:
f`(x)=a1+2a2(x-x0)+3a3(x-x0)2+…+nan(x-x­0)n-1+… (1.3.14)
Bundan, x = x0 bo`lgan holda
f`(x0)=a1 (1.3.15)
ekanligi ko`rinadi. (1.3.14) ning ikkala tomonini differentsiallab, quyidagini hosil qilamiz:
(1.3.15)

Yüklə 0,73 Mb.

Dostları ilə paylaş:
1   ...   4   5   6   7   8   9   10   11   ...   14




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin